629 research outputs found
Augmenting NF-kappaB in poor-risk CLL: A general paradigm for other cancers?
Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder of B lymphocytes. It has an extremely variable clinical course. Some patients have a rather indolent course, whereas others are known to have a rapidly progressive disease. Most patients die from causes related to CLL that can be due to bone marrow failure, infection, or transformation to a high-grade lymphoma. Clinical stratification of CLL has revealed that a subset of patients with poor prognosis harbor cytogenetic alterations and lack mutations at the immunoglobulin locus. Therefore, the development of additional molecular biomarkers for patients at high risk for early lethality from CLL could help direct their care toward enrollment in clinical trials of promising experimental approaches such as inhibitors of BCL2 or BCR signaling or CD19 chimeric antigen receptor T cells (which have been shown to eradicate CLL in patients who have failed other approaches). In this issue, Mansouri et al. report that somatic mutations in the NFKBIE gene occur in 7% of poor prognosis patients, and this may be a common mechanism contributing to disease progression by sustaining the survival of malignant CLL cells
A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules.
The accelerated discovery of disease-related genes emerging from genomic studies has strained the capacity of traditional genetically engineered mouse models (GEMMs) to provide in-vivo validation. Direct, somatic, genetic engineering approaches allow for accelerated and flexible genetic manipulation and represent an attractive alternative to GEMMs. In this study we investigated the feasibility, safety and efficiency of a minimally invasive, lentiviral based approach for the sustained in-vivo modification of renal tubular epithelial cells. Using ultrasound guidance, reporter vectors were directly injected into the mouse renal parenchyma. We observed transgene expression confined to the renal cortex (specifically proximal and distal tubules) and sustained beyond 2 months post injection. Furthermore, we demonstrate the ability of this methodology to induce long-term, in-vivo knockdown of candidate genes either through somatic recombination of floxed alleles or by direct delivery of specific shRNA sequences. This study demonstrates that ultrasound-guided injection of lentiviral vectors provides a safe and efficient method for the genetic manipulation of renal tubules, representing a quick and versatile alternative to GEMMs for the functional characterisation of disease-related genes.The authors wish to thank the core facilities (Biological Research Unit, Histopathology, Flow Cytometry and Microscopy) of the CRUK Cambridge Institute for advice and technical assistance. This work was funded by a CRUK Clinician Scientist Fellowship award (C37839/A12177).This is the final version. It was first published by NPG at http://www.nature.com/srep/2015/150605/srep11061/full/srep11061.html
Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells.
Genetically relevant mouse models need to recapitulate the hallmarks of human disease by permitting spatiotemporal gene targeting. This is especially important for replicating the biology of complex diseases like cancer, where genetic events occur in a sporadic fashion within developed somatic tissues. Though a number of renal tubule targeting mouse lines have been developed their utility for the study of renal disease is limited by lack of inducibility and specificity. In this study we describe the generation and characterisation of two novel mouse lines directing CreERT2 expression to renal tubular epithelia. The Pax8-CreERT2 transgenic line uses the mouse Pax8 promoter to direct expression of CreERT2 to all renal tubular compartments (proximal and distal tubules as well as collecting ducts) whilst the Slc22a6-CreERT2 knock-in line utilises the endogenous mouse Slc22a6 locus to specifically target the epithelium of proximal renal tubules. Both lines show high organ and tissue specificity with no extrarenal activity detected. To establish the utility of these lines for the study of renal cancer biology, Pax8-CreERT2 and Slc22a6-CreERT2 mice were crossed to conditional Vhl knockout mice to induce long-term renal tubule specific Vhl deletion. These models exhibited renal specific activation of the hypoxia inducible factor pathway (a VHL target). Our results establish Pax8-CreERT2 and Slc22a6-CreERT2 mice as valuable tools for the investigation and modelling of complex renal biology and disease.This work was supported by a Cancer Research UK Clinician Scientist Fellowship award (C37839/A12177) to AM. DA, BF, FY are funded by the Wellcome Trust Sanger Institute (grant number WT098051).This is the final version of the article. It first appeared from the Public Library of Science (PLOS) via https://doi.org/10.1371/journal.pone.014805
Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series.
OBJECTIVE: Treatment options for non-hospitalised patients with coronavirus disease 2019 (COVID-19) to reduce morbidity, mortality and spread of the disease are an urgent global need. The over-the-counter histamine-2 receptor antagonist famotidine is a putative therapy for COVID-19. We quantitively assessed longitudinal changes in patient reported outcome measures in non-hospitalised patients with COVID-19 who self-administered high-dose famotidine orally. DESIGN: Patients were enrolled consecutively after signing written informed consent. Data on demographics, COVID-19 diagnosis, famotidine use, drug-related side effects, temperature measurements, oxygen saturations and symptom scores were obtained using questionnaires and telephone interviews. Based on a National Institute of Health (NIH)-endorsed Protocol to research Patient Experience of COVID-19, we collected longitudinal severity scores of five symptoms (cough, shortness of breath, fatigue, headaches and anosmia) and general unwellness on a four-point ordinal scale modelled on performance status scoring. All data are reported at the patient level. Longitudinal combined normalised symptom scores were statistically compared. RESULTS: Ten consecutive patients with COVID-19 who self-administered high-dose oral famotidine were identified. The most frequently used famotidine regimen was 80 mg three times daily (n=6) for a median of 11 days (range: 5-21 days). Famotidine was well tolerated. All patients reported marked improvements of disease related symptoms after starting famotidine. The combined symptom score improved significantly within 24 hours of starting famotidine and peripheral oxygen saturation (n=2) and device recorded activity (n=1) increased. CONCLUSIONS: The results of this case series suggest that high-dose oral famotidine is well tolerated and associated with improved patient-reported outcomes in non-hospitalised patients with COVID-19
Accurate and robust inference of genetic ancestry from cancer-derived molecular data across genomic platforms
Genetic ancestry-oriented cancer research requires the ability to perform accurate and robust ancestry inference from existing cancer-derived data, including whole exomes, transcriptomes and targeted gene panels, very often in the absence of matching cancer-free genomic data. In order to optimize and assess the performance of the ancestry inference for any given input cancer-derived molecular profile, we develop a data synthesis framework. In its core procedure, the ancestral background of the profiled patient is replaced with one of any number of individuals with known ancestry. Data synthesis is applicable to multiple profiling platforms and makes it possible to assess the performance of inference separately for each continental-level ancestry. This ability extends to all ancestries, including those without statistically sufficient representation in the existing cancer data. We further show that our inference procedure is accurate and robust in a wide range of sequencing depths. Testing our approach for three representative cancer types, and across three molecular profiling modalities, we demonstrate that global, continental-level ancestry of the patient can be inferred with high accuracy, as quantified by its agreement with the golden standard of the ancestry derived from matching cancer-free molecular data. Our study demonstrates that vast amounts of existing cancer-derived molecular data potentially are amenable to ancestry-oriented studies of the disease, without recourse to matching cancer-free genomes or patients’ self-identification by ancestry
Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer
Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of alpha-smooth muscle actin (alphaSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated alphaSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development
Suppression of Lung Adenocarcinoma Progression by Nkx2-1
Despite the high prevalence and poor outcome of patients with
metastatic lung cancer the mechanisms of tumour progression and
metastasis remain largely uncharacterized. Here we modelled
human lung adenocarcinoma, which frequently harbours activating
point mutations in KRAS and inactivation of the p53 pathway,
using conditional alleles in mice. Lentiviral-mediated somatic
activation of oncogenic Kras and deletion of p53 in the lung epithelial
cells of Kras[superscript LSL-G12D/+];p53[superscript flox/flox] mice initiates lung adenocarcinoma
development4. Although tumours are initiated synchronously
by defined genetic alterations, only a subset becomes malignant,
indicating that disease progression requires additional alterations.
Identification of the lentiviral integration sites allowed us to distinguish
metastatic from non-metastatic tumours and determine the
gene expression alterations that distinguish these tumour types.
Cross-species analysis identified the NK2-related homeobox transcription
factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate
suppressor of malignant progression. In this mouse model, Nkx2-1
negativity is pathognomonic of high-grade poorly differentiated
tumours. Gain- and loss-of-function experiments in cells derived
from metastatic and non-metastatic tumours demonstrated that
Nkx2-1 controls tumour differentiation and limitsmetastatic potential
in vivo. Interrogation of Nkx2-1-regulated genes, analysis of
tumours at defined developmental stages, and functional complementation
experiments indicate that Nkx2-1 constrains tumours in
part by repressing the embryonically restricted chromatin regulator
Hmga2. Whereas focal amplification of NKX2-1 in a fraction of
human lung adenocarcinomas has focused attention on its oncogenic
function, our data specifically link Nkx2-1 downregulation
to loss of differentiation, enhanced tumour seeding ability and
increased metastatic proclivity. Thus, the oncogenic and suppressive
functions ofNkx2-1 in the sametumourNational Institutes of Health (U.S.) (grant U01-CA84306 )National Institutes of Health (U.S.) (grant K99-CA151968)Howard Hughes Medical InstituteLudwig Center for Molecular OncologyNational Cancer Institute (U.S.) (Cancer Center Support (core) grant P30-CA14051
Loss of p53 tumor suppression function drives invasion and genomic instability in models of murine pancreatic cancer
Pancreatic ductal adenocarcinoma (PDA) is a deadly disease with few treatment options. There is an urgent need to better understand the molecular mechanisms that drive disease progression, with the ultimate aim of identifying early detection markers and clinically actionable targets. To investigate the transcriptional and morphological changes associated with pancreatic cancer progression, we analyzed the KrasLSLG12D/+; Trp53LSLR172H/+; Pdx1-Cre (KPC) mouse model. We have identified an intermediate cellular event during pancreatic carcinogenesis in the KPC mouse model of PDA that is represented by a subpopulation of tumor cells that express KrasG12D, p53R172H and one allele of wild-type Trp53. In vivo, these cells represent a histological spectrum of pancreatic intraepithelial neoplasia (PanIN) and acinar-to-ductal metaplasia (ADM) and rarely proliferate. Following loss of wild-type p53, these precursor lesions undergo malignant de-differentiation and acquire invasive features. We have established matched organoid cultures of pre-invasive and invasive cells from murine PDA. Expression profiling of the organoids led to the identification of markers of the pre-invasive cancer cells in vivo and mechanisms of disease aggressiveness
- …
