195 research outputs found

    Functional anatomy of the masking level difference, an fMRI study

    Get PDF
    Introduction: Masking level differences (MLDs) are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. Methods: Ten participants (5 female), age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli). Band-pass (400-600 Hz) noise and an enveloped signal (.25 second tone burst, 50% duty-cycle) were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. Results: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. Conclusion: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition). The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing. © 2012 Wack et al

    IFN-λ3, not IFN-λ4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis

    Get PDF
    Genetic variation in the IFNL3-IFNL4 (interferon-λ3-interferon-λ4) region is associated with hepatic inflammation and fibrosis. Whether IFN-λ3 or IFN-λ4 protein drives this association is not known. We demonstrate that hepatic inflammation, fibrosis stage, fibrosis progression rate, hepatic infiltration of immune cells, IFN-λ3 expression, and serum sCD163 levels (a marker of activated macrophages) are greater in individuals with the IFNL3-IFNL4 risk haplotype that does not produce IFN-λ4, but produces IFN-λ3. No difference in these features was observed according to genotype at rs117648444, which encodes a substitution at position 70 of the IFN-λ4 protein and reduces IFN-λ4 activity, or between patients encoding functionally defective IFN-λ4 (IFN-λ4-Ser70) and those encoding fully active IFN-λ4-Pro70. The two proposed functional variants (rs368234815 and rs4803217) were not superior to the discovery SNP rs12979860 with respect to liver inflammation or fibrosis phenotype. IFN-λ3 rather than IFN-λ4 likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis

    Bioreactor technologies to support liver function in vitro

    Get PDF
    Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.National Institutes of Health (U.S.) (R01 EB010246)National Institutes of Health (U.S.) (P50-GM068762-08)National Institutes of Health (U.S.) (R01-ES015241)National Institutes of Health (U.S.) (P30-ES002109)5UH2TR000496-02National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (CBET-0939511)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039

    The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    Get PDF
    BACKGROUND: In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. METHODOLOGY/ PRINCIPAL FINDINGS: Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. CONCLUSIONS/SIGNIFICANCE: The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans

    User needs assessment for geospatial information to improve fire management In the Amazonia region.

    Get PDF
    The SERVIR-Amazonia Hub will present a user needs assessment for geospatial information to improve environmental decision-making in the Amazonia region in the thematic area of fire. The user needs assessment describes the issues around fire in Amazonia (covering Brazil, Peru, Colombia, Ecuador, Suriname, Guyane) and the potential impacts timely, accurate and robust geospatial information can have on improved management of fires. The user needs assessment comprises of 1) a survey of existing geospatial tools, datasets, and applications to improve fire management; 2) a summary of user consultation workshops to identify issues around fire and geospatial information needs in the region; and 3) stakeholder maps and information flows for specific geospatial services such as early warning fire detection and fire risk indexes. The presentation will summarize the user needs assessment and identify critical information needs for stakeholders in the Amazonia region. SERVIR-Amazonia Hub is part of a global development initiative, known as SERVIR Global, heading jointly by the United States National Aeronautics and Space Administration (NASA) and the United States Agency for International Development USAID, since 2005. In partnership with leading regional organizations worldwide, SERVIR helps developing countries use information provided by Earth observing satellites and geospatial technologies. SERVIR empowers decision-makers with tools, products, and services to act locally on climate-sensitive issues such as disasters, agriculture, water, fire, and ecosystems and land use. SERVIR-Amazonia implementation is led by CIAT, together with Hub partner institutions, traduced as a USAID funded program

    Changes in soil mechanical and hydraulic properties through regenerative cultivation measures in long-term and farm experiments in Germany

    Get PDF
    Regenerative agriculture has been associated with improved soil structure and soil fertility. However, conclusive evidence of its efficacy has remained elusive owing to a lack of long-term experimental studies. In this study, we assessed the impact of diverse regenerative agricultural measures on soil mechanical and hydraulic properties and indicators. Tested treatment factors included reduced tillage versus plowing, along with different levels of compost, mulch, and the application of ferments and compost tea. We measured in situ soil strength via soil penetration (from 0 to 0.8 m depth) and shear resistance (at 0.08 and 0.23 m depth) and assessed field-saturated hydraulic conductivity and ex situ soil aggregate stability (at 0.07 and 0.23 m depth). The experiments were conducted at five sites in Hesse, Germany, including one organic long-term experiment (LTE, since 2010) in Neu-Eichenberg and three organic and one conventional on-farm experiments to cover different soil types, weather conditions, and field practices. The soil types are classified as Luvisol and Vertic Cambisols, and the soil texture ranges from silt loam to silty clay loam. In the LTE, significant differences in aggregate stability and shear resistance were noted between treatments, with a higher geometric mean aggregate diameter at 0.07 m depth in 2021 and 2022 and a higher shear resistance at 0.19 m and 0.23 m in 2020 and in 2021, respectively, in the reduced tillage systems. However, no significant differences were observed among treatments for field-saturated hydraulic conductivity, which was overall very high, showing that reduced tillage did not negatively influence saturated infiltration, albeit bulk density is higher than in the conventionally plowed system. The soil penetration resistance was generally higher for the reduced tillage treatments across depths of 0.0–0.30 m, albeit not statistically significant (p > 0.05). Significantly higher water-stable aggregates and geometric mean diameters were observed for regenerative agricultural treatments in three of the on-farm experiments at a depth of 0.07 m. The shear resistance was significantly higher in regenerative agriculture units in specific years and depths. Although the outcomes are encouraging, the variability of the effects of reduced tillage and organic amendments in affecting soil properties highlights the need for further long-term research including farm trials. This is essential to fully understand the effects of regenerative practices on soil physical quality

    SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies

    Get PDF
    Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses

    Improving Metabolic Health Through Precision Dietetics in Mice

    Get PDF
    The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet’s impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or “precision dietetics,” approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach
    corecore