69 research outputs found
Theano: new features and speed improvements
Theano is a linear algebra compiler that optimizes a user's
symbolically-specified mathematical computations to produce efficient low-level
implementations. In this paper, we present new features and efficiency
improvements to Theano, and benchmarks demonstrating Theano's performance
relative to Torch7, a recently introduced machine learning library, and to
RNNLM, a C++ library targeted at recurrent neural networks.Comment: Presented at the Deep Learning Workshop, NIPS 201
Brain Tumor Segmentation with Deep Neural Networks
In this paper, we present a fully automatic brain tumor segmentation method
based on Deep Neural Networks (DNNs). The proposed networks are tailored to
glioblastomas (both low and high grade) pictured in MR images. By their very
nature, these tumors can appear anywhere in the brain and have almost any kind
of shape, size, and contrast. These reasons motivate our exploration of a
machine learning solution that exploits a flexible, high capacity DNN while
being extremely efficient. Here, we give a description of different model
choices that we've found to be necessary for obtaining competitive performance.
We explore in particular different architectures based on Convolutional Neural
Networks (CNN), i.e. DNNs specifically adapted to image data.
We present a novel CNN architecture which differs from those traditionally
used in computer vision. Our CNN exploits both local features as well as more
global contextual features simultaneously. Also, different from most
traditional uses of CNNs, our networks use a final layer that is a
convolutional implementation of a fully connected layer which allows a 40 fold
speed up. We also describe a 2-phase training procedure that allows us to
tackle difficulties related to the imbalance of tumor labels. Finally, we
explore a cascade architecture in which the output of a basic CNN is treated as
an additional source of information for a subsequent CNN. Results reported on
the 2013 BRATS test dataset reveal that our architecture improves over the
currently published state-of-the-art while being over 30 times faster
EmoNets: Multimodal deep learning approaches for emotion recognition in video
The task of the emotion recognition in the wild (EmotiW) Challenge is to
assign one of seven emotions to short video clips extracted from Hollywood
style movies. The videos depict acted-out emotions under realistic conditions
with a large degree of variation in attributes such as pose and illumination,
making it worthwhile to explore approaches which consider combinations of
features from multiple modalities for label assignment. In this paper we
present our approach to learning several specialist models using deep learning
techniques, each focusing on one modality. Among these are a convolutional
neural network, focusing on capturing visual information in detected faces, a
deep belief net focusing on the representation of the audio stream, a K-Means
based "bag-of-mouths" model, which extracts visual features around the mouth
region and a relational autoencoder, which addresses spatio-temporal aspects of
videos. We explore multiple methods for the combination of cues from these
modalities into one common classifier. This achieves a considerably greater
accuracy than predictions from our strongest single-modality classifier. Our
method was the winning submission in the 2013 EmotiW challenge and achieved a
test set accuracy of 47.67% on the 2014 dataset
GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function
Abstract
Background:
Most successful computational approaches for protein function prediction integrate multiple genomics and proteomics data sources to make inferences about the function of unknown proteins. The most accurate of these algorithms have long running times, making them unsuitable for real-time protein function prediction in large genomes. As a result, the predictions of these algorithms are stored in static databases that can easily become outdated. We propose a new algorithm, GeneMANIA, that is as accurate as the leading methods, while capable of predicting protein function in real-time.
Results:
We use a fast heuristic algorithm, derived from ridge regression, to integrate multiple functional association networks and predict gene function from a single process-specific network using label propagation. Our algorithm is efficient enough to be deployed on a modern webserver and is as accurate as, or more so than, the leading methods on the MouseFunc I benchmark and a new yeast function prediction benchmark; it is robust to redundant and irrelevant data and requires, on average, less than ten seconds of computation time on tasks from these benchmarks.
Conclusion:
GeneMANIA is fast enough to predict gene function on-the-fly while achieving state-of-the-art accuracy. A prototype version of a GeneMANIA-based webserver is available at
http://morrislab.med.utoronto.ca/prototype
- …
