190 research outputs found
Sub-system mechanical design for an eLISA optical bench
We present the design and development status of the opto-mechanical sub-systems that will be used in an experimental demonstration of imaging systems for eLISA. An optical bench test bed design incorporates a Zerodur® baseplate with lenses, photodetectors, and other opto-mechanics that must be both adjustable - with an accuracy of a few micrometers - and stable over a 0 to 40°C temperature range. The alignment of a multi-lens imaging system and the characterisation of the system in multiple degrees of freedom is particularly challenging. We describe the mechanical design of the precision mechanisms, including thermally stable flexure-based optical mounts and complex multi-lens, multi-axis adjuster mechanisms, and update on the integration of the mechanisms on the optical bench
An Introduction And Case History Review Of Active Magnetic Bearings.
LecturePg. 121-126The concept of magnetic levitation is not a new one and can be easily traced back to the 1800s [1). It is only recently, however, that the congruous technologies of electronic control systems, power electronics, and magnetic materials have begun to merge to make the magnetic suspension device a viable product. A brief overview is presented of an active magnetic bearing technology [2]. The required systems engineering interface with the machine designer is discussed. Finally, case histories of various turbomachinery in North America presently operating on magnetic bearings are reviewed
Convergence of marine megafauna movement patterns in coastal and open oceans
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine
vertebrates partly depends on the animals’ movement patterns.
Effective conservation requires identification of the key drivers of
movement including intrinsic properties and extrinsic constraints
associated with the dynamic nature of the environments the animals
inhabit. However, the relative importance of intrinsic versus
extrinsic factors remains elusive. We analyse a global dataset of
2.8 million locations from > 2,600 tracked individuals across 50
marine vertebrates evolutionarily separated by millions of years
and using different locomotion modes (fly, swim, walk/paddle).
Strikingly, movement patterns show a remarkable convergence,
being strongly conserved across species and independent of body
length and mass, despite these traits ranging over 10 orders of
magnitude among the species studied. This represents a fundamental
difference between marine and terrestrial vertebrates not
previously identified, likely linked to the reduced costs of locomotion
in water. Movement patterns were primarily explained by the
interaction between species-specific traits and the habitat(s) they
move through, resulting in complex movement patterns when
moving close to coasts compared to more predictable patterns
when moving in open oceans. This distinct difference may be
associated with greater complexity within coastal micro-habitats,
highlighting a critical role of preferred habitat in shaping marine
vertebrate global movements. Efforts to develop understanding
of the characteristics of vertebrate movement should consider the
habitat(s) through which they move to identify how movement
patterns will alter with forecasted severe ocean changes, such as
reduced Arctic sea ice cover, sea level rise and declining oxygen
content.Workshops funding granted by the UWA Oceans Institute, AIMS, and
KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC
(UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by
UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by
a CAPES fellowship (Ministry of Education)
Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites
The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions.
The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness
of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence
were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density
and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that
the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
Airborne and Ground-Based Measurements of the Trace Gases and Particles Emitted by Prescribed Fires in the United States
We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems
Laboratory Measurements of Trace Gas Emissions from Biomass Burning of Fuel Types from the Southeastern and Southwestern United States
Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg(-1) and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 +/- 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California
An elegant Breadboard of the optical bench for eLISA/NGO
The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10−5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching.
These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels
Coupling Field and Laboratory Measurements to Estimate the Emission Factors of Identified and Unidentified Trace Gases for Prescribed Fires
An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTRMS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, field phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for smoldering compounds emitted from the semiarid shrubland fuels should likely be increased by a factor of similar to 2.7 to better represent field fires. Based on the lab/field comparison, we present emission factors for 357 pyrogenic species (including unidentified species) for 4 broad fuel types: pine understory, semiarid shrublands, coniferous canopy, and organic soil. To our knowledge this is the most comprehensive measurement of biomass burning emissions to date and it should enable improved representation of smoke composition in atmospheric models. The results support a recent estimate of global NMOC emissions from biomass burning that is much higher than widely used estimates and they provide important insights into the nature of smoke. 31-72% of the mass of gas-phase NMOC species was attributed to species that we could not identify. These unidentified species are not represented in most models, but some provision should be made for the fact that they will react in the atmosphere. In addition, the total mass of gas-phase NMOC divided by the mass of co-emitted PM2.5 averaged about three (range similar to 2.0-8.7). About 35-64% of the NMOC were likely semivolatile or of intermediate volatility. Thus, the gas-phase NMOC represent a large reservoir of potential precursors for secondary formation of ozone and organic aerosol. For the single lab fire in organic soil about 28% of the emitted carbon was present as gas-phase NMOC and similar to 72% of the mass of these NMOC was unidentified, highlighting the need to learn more about the emissions from smoldering organic soils. The mass ratio of total NMOC to NOx as NO ranged from 11 to 267, indicating that NOx-limited O-3 production would be common in evolving biomass burning plumes. The fuel consumption per unit area was 7.0 +/- 2.3 Mg ha(-1) and 7.7 +/- 3.7 Mg ha(-1) for pine-understory and semiarid shrubland prescribed fires, respectively
- …
