139 research outputs found

    Emergent intentionality in perception-action subsumption hierarchies

    Get PDF
    A cognitively-autonomous artificial agent may be defined as one able to modify both its external world-model and the framework by which it represents the world, requiring two simultaneous optimization objectives. This presents deep epistemological issues centered on the question of how a framework for representation (as opposed to the entities it represents) may be objectively validated. In this summary paper, formalizing previous work in this field, it is argued that subsumptive perception-action learning has the capacity to resolve these issues by {\em a)} building the perceptual hierarchy from the bottom up so as to ground all proposed representations and {\em b)} maintaining a bijective coupling between proposed percepts and projected action possibilities to ensure empirical falsifiability of these grounded representations. In doing so, we will show that such subsumptive perception-action learners intrinsically incorporate a model for how intentionality emerges from randomized exploratory activity in the form of 'motor babbling'. Moreover, such a model of intentionality also naturally translates into a model for human-computer interfacing that makes minimal assumptions as to cognitive states

    Kernel combination via debiased object correspondence analysis

    Get PDF
    This paper addresses the problem of combining multi-modal kernels in situations in which object correspondence information is unavailable between modalities, for instance, where missing feature values exist, or when using proprietary databases in multi-modal biometrics. The method thus seeks to recover inter-modality kernel information so as to enable classifiers to be built within a composite embedding space. This is achieved through a principled group-wise identification of objects within differing modal kernel matrices in order to form a composite kernel matrix that retains the full freedom of linear kernel combination existing in multiple kernel learning. The underlying principle is derived from the notion of tomographic reconstruction, which has been applied successfully in conventional pattern recognition. In setting out this method, we aim to improve upon object-correspondence insensitive methods, such as kernel matrix combination via the Cartesian product of object sets to which the method defaults in the case of no discovered pairwise object identifications. We benchmark the method against the augmented kernel method, an order-insensitive approach derived from the direct sum of constituent kernel matrices, and also against straightforward additive kernel combination where the correspondence information is given a priori. We find that the proposed method gives rise to substantial performance improvements

    A kernel-based framework for medical big-data analytics

    Get PDF
    The recent trend towards standardization of Electronic Health Records (EHRs) represents a significant opportunity and challenge for medical big-data analytics. The challenge typically arises from the nature of the data which may be heterogeneous, sparse, very high-dimensional, incomplete and inaccurate. Of these, standard pattern recognition methods can typically address issues of high-dimensionality, sparsity and inaccuracy. The remaining issues of incompleteness and heterogeneity however are problematic; data can be as diverse as handwritten notes, blood-pressure readings and MR scans, and typically very little of this data will be co-present for each patient at any given time interval. We therefore advocate a kernel-based framework as being most appropriate for handling these issues, using the neutral point substitution method to accommodate missing inter-modal data. For pre-processing of image-based MR data we advocate a Deep Learning solution for contextual areal segmentation, with edit-distance based kernel measurement then used to characterize relevant morphology

    A saliency-based framework for 2D-3D registration

    Get PDF
    Abstract: Here we propose a saliency-based filtering approach to the problem of registering an untextured 3D object to a single monocular image. The principle of saliency can be applied to a range of modalities and domains to find intrinsically descriptive entities from amongst detected entities, making it a rigorous approach to multi-modal registration. We build on the Kadir-Brady saliency framework due to its principled information-theoretic approach which enables us to naturally extend it to the 3D domain. The salient points from each domain are initially aligned using the SoftPosit algorithm. This is subsequently refined by aligning the silhouette with contours extracted from the image. Whereas other point based registration algorithms focus on corners or straight lines, our saliency-based approach is more general as it is more widely applicable e.g. to curved surfaces where a corner detector would fail. We compare our salient point detector to the Harris corner and SIFT keypoint detectors and show it generally achieves superior registration accuracy.

    Multilevel Chinese takeaway process and label-based processes for rule induction in the context of automated sports video annotation

    Get PDF
    We propose four variants of a novel hierarchical hidden Markov models strategy for rule induction in the context of automated sports video annotation including a multilevel Chinese takeaway process (MLCTP) based on the Chinese restaurant process and a novel Cartesian product label-based hierarchical bottom-up clustering (CLHBC) method that employs prior information contained within label structures. Our results show significant improvement by comparison against the flat Markov model: optimal performance is obtained using a hybrid method, which combines the MLCTP generated hierarchical topological structures with CLHBC generated event labels. We also show that the methods proposed are generalizable to other rule-based environments including human driving behavior and human actions

    Can DMD obtain a scene background in color?

    Get PDF
    A background model describes a scene without any foreground objects and has a number of applications, ranging from video surveillance to computational photography. Recent studies have introduced the method of Dynamic Mode Decomposition (DMD) for robustly separating video frames into a background model and foreground components. While the method introduced operates by converting color images to grayscale, we in this study propose a technique to obtain the background model in the color domain. The effectiveness of our technique is demonstrated using a publicly available Scene Background Initialisation (SBI) dataset. Our results both qualitatively and quantitatively show that DMD can successfully obtain a colored background model

    Problems of sale politics of modern Ukrainian enterprises

    Get PDF
    Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We here set out a very general learning framework for cognitive systems in which online learning of the P-A mapping may be conducted within a symbolic processing context, so that complex contextual reasoning can influence the P-A mapping. In utilizing a variational calculus approach to define a suitable objective function, the P-A mapping can be treated as an online learning problem via gradient descent using partial derivatives. Our central theoretical result is to demonstrate top-down modulation of low-level perceptual confidences via the Jacobian of the higher levels of a subsumptive P-A hierarchy. Thus, the separation of the Jacobian as a multiplying factor between levels within the objective function naturally enables the integration of abstract symbolic manipulation in the form of fuzzy deductive logic into the P-A mapping learning. We experimentally demonstrate that the resulting framework achieves significantly better accuracy than using P-A learning without top-down modulation. We also demonstrate that it permits novel forms of context-dependent multilevel P-A mapping, applying the mechanism in the context of an intelligent driver assistance system.DIPLECSGARNICSCUA
    corecore