16,268 research outputs found

    The Redshift-Space Cluster-Galaxy Cross-Correlation Function: I. Modeling Galaxy Infall onto Millennium Simulation Clusters and SDSS Groups

    Full text link
    The large scale infall of galaxies around massive clusters provides a potentially powerful diagnostic of structure growth, dark energy, and cosmological deviations from General Relativity. We develop and test a method to recover galaxy infall kinematics (GIK) from measurements of the redshift-space cluster-galaxy cross-correlation function \xi_{cg}(r_p,r_\pi). Using galaxy and halo samples from the Millennium simulation, we calibrate an analytic model of the galaxy kinematic profiles comprised of a virialized component with an isotropic Gaussian velocity distribution and an infall component described by a skewed 2D t-distribution with a characteristic infall velocity v_r and separate radial and tangential dispersions. We show that convolving the real-space cross-correlation function with this velocity distribution accurately predicts the redshift-space \xi_{cg}, and we show that measurements of \xi_{cg} can be inverted to recover the four distinct elements of the GIK profiles. These in turn provide diagnostics of cluster mass profiles, and we expect the characteristic infall velocity v_r(r) in particular to be insensitive to galaxy formation physics that can affect velocity dispersions within halos. As a proof of concept we measure \xi_{cg} for rich galaxy groups in the Sloan Digital Sky Survey and recover GIK profiles for groups in two bins of central galaxy stellar mass. The higher mass bin has a v_r(r) curve very similar to that of 10^{14} Msun halos in the Millennium simulation, and the recovered kinematics follow the expected trends with mass. GIK modeling of cluster-galaxy cross-correlations can be a valuable complement to stacked weak lensing analyses, allowing novel tests of modified gravity theories that seek to explain cosmic acceleration.Comment: Matched to the published version (adding one figure illustrating the position and velocity vectors). For a brief video explaining the key result of this paper, see https://www.youtube.com/watch?v=7RB49odfSGo, or http://v.youku.com/v_show/id_XNDcxMDY3MTQ0.html in countries where YouTube is not accessibl

    On the Survival of Overconfident Traders in a Competitive Securities Market

    Get PDF
    Recent research has proposed several ways in which overconfident traders can persist in competition with rational traders. This paper offers an additional reason: overconfident traders do better than purely rational traders at exploiting mispricing caused by liquidity or noise traders. We examine both the static profitability of overconfident versus rational trading strategies, and the dynamic evolution of a population of overconfident, rational and noise traders. Replication of overconfident and rational types is assumed to be increasing in the recent profitability of their strategies. The main result is that the long-run steady-state equilibrium always involves overconfident traders as a substantial positive fraction of the population.Survivorship, Natural Selection, Overconfident Traders, Noise traders

    Investigation of the 1+1 dimensional Thirring model using the method of matrix product states

    Full text link
    We present preliminary results of a study on the non-thermal phase structure of the (1+1) dimensional massive Thirring model, employing the method of matrix product states. Through investigating the entanglement entropy, the fermion correlators and the chiral condensate, it is found that this approach enables us to observe numerical evidence of a Kosterlitz-Thouless phase transition in the model.Comment: 7 pages, 4 figures; contribution to the proceedings of Lattice 2018 conferenc

    The Conditional Colour-Magnitude Distribution: I. A Comprehensive Model of the Colour-Magnitude-Halo Mass Distribution of Present-Day Galaxies

    Full text link
    We formulate a model of the conditional colour-magnitude distribution (CCMD) to describe the distribution of galaxy luminosity and colour as a function of halo mass. It consists of two populations of different colour distributions, dubbed pseudo-blue and pseudo-red, respectively, with each further separated into central and satellite galaxies. We define a global parameterization of these four colour-magnitude distributions and their dependence on halo mass, and we infer parameter values by simultaneously fitting the space densities and auto-correlation functions of 79 galaxy samples from the Sloan Digital Sky Survey defined by fine bins in the colour-magnitude diagram (CMD). The model deprojects the overall galaxy CMD, revealing its tomograph along the halo mass direction. The bimodality of the colour distribution is driven by central galaxies at most luminosities, though at low luminosities it is driven by the difference between blue centrals and red satellites. For central galaxies, the two pseudo-colour components are distinct and orthogonal to each other in the CCMD: at fixed halo mass, pseudo-blue galaxies have a narrow luminosity range and broad colour range, while pseudo-red galaxies have a narrow colour range and broad luminosity range. For pseudo-blue centrals, luminosity correlates tightly with halo mass, while for pseudo-red galaxies colour correlates more tightly (redder galaxies in more massive haloes). The satellite fraction is higher for redder and for fainter galaxies, with colour a stronger indicator than luminosity. We discuss the implications of the results and further applications of the CCMD model.Comment: 32 pages, 26 figures, accepted for publication in MNRA
    corecore