1,051 research outputs found
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Ecological research in the Large-scale Biosphere-Atmosphere Experiment in Amazonia: Early results
Copyright by the Ecological Society of America ©2004 Michael Keller, Ane Alencar, Gregory P. Asner, Bobby Braswell, Mercedes Bustamante, Eric Davidson, Ted Feldpausch, Erick Fernandes, Michael Goulden, Pavel Kabat, Bart Kruijt, Flavio Luizão, Scott Miller, Daniel Markewitz, Antonio D. Nobre, Carlos A. Nobre, Nicolau Priante Filho, Humberto da Rocha, Pedro Silva Dias, Celso von Randow, and George L. Vourlitis 2004. ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS. Ecological Applications 14:3–16. http://dx.doi.org/10.1890/03-6003The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early results from ecological studies within LBA emphasize the variability within the vast Amazon region and the profound effects that land-use and land-cover changes are having on that landscape. The predominant land cover of the Amazon region is evergreen forest; nonetheless, LBA studies have observed strong seasonal patterns in gross primary production, ecosystem respiration, and net ecosystem exchange, as well as phenology and tree growth. The seasonal patterns vary spatially and interannually and evidence suggests that these patterns are driven not only by variations in weather but also by innate biological rhythms of the forest species. Rapid rates of deforestation have marked the forests of the Amazon region over the past three decades. Evidence from ground-based surveys and remote sensing show that substantial areas of forest are being degraded by logging activities and through the collapse of forest edges. Because forest edges and logged forests are susceptible to fire, positive feedback cycles of forest degradation may be initiated by land-use-change events. LBA studies indicate that cleared lands in the Amazon, once released from cultivation or pasture usage, regenerate biomass rapidly. However, the pace of biomass accumulation is dependent upon past land use and the depletion of nutrients by unsustainable land-management practices. The challenge for ongoing research within LBA is to integrate the recognition of diverse patterns and processes into general models for prediction of regional ecosystem function
Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein
The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human \u3b2-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac71-16. This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
A flexible mathematical model platform for studying branching networks : experimentally validated using the model actinomycete, Streptomyces coelicolor
Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
A new hammer to crack an old nut : interspecific competitive resource capture by plants is regulated by nutrient supply, not climate
Peer reviewedPublisher PD
β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed
Purpose: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. Methods: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day−1 of BA (n=12) or placebo (PLA; n=11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. Results: BA supplementation had no effect on voluntary
or electrically evoked isometric force production, or
twitch electromechanical delay and time-to-peak tension.
There was a significant decline in muscle HRT in fresh and fatigued muscle conditions during both resting (3±13%; 19±26%) and potentiated (1±15%; 2±20%) twitch
contractions. Conclusions: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. Trial registration The trial is registered with Clinicaltrials.gov, ID number NCT02819505
- …
