6,928 research outputs found
The Buoyant Behavior of Viral and Bacterial DNA in Alkaline CsCl
In equilibrium density gradient centrifugation, the banding polymer species is electrically neutral. The banding species for a negative polyelectrolyte with a polyanion
P_(n)^(-z)n (where n is the degree of polymerization, and z the titration charge per monomer unit) in a CsCl salt gradient is CS_(zn)P_n. If the ion P_(n)^(-z)n is itself a weak acid, it may be titrated to the state P_(n)^(-(Zn+y)) by CsOH; the banding species is then Cs_(zn+y)P_n. Because of the large mass and high effective "density" of a Cs^+ ion, it is to be expected that the buoyant density in a CsCl gradient of a polymer acid will be increased by such a partial alkaline titration with CsOH. This expectation has been confirmed for polyglutamic acid (where z = 0 at low pH). The guanine and thymine monomer units of DNA are weak acids. The present communication is concerned with the increase in buoyant density of DNA in alkaline CsCl solutions. It is well known that the guanine and thymine protons are more readily titrated in denatured DNA than in native DNA. We find that the buoyant density of denatured DNA and of single strand ϕX-174 DNA gradually increases as the pH of the solution is increased beyond pH 9.8. The density of native DNA is not affected until a critical pH > 11 is reached, where the DNA abruptly denatures and increases in density. Similar increases in buoyant density have been observed independently by Baldwin and Shooter in their studies of 5BU[overbar]-substituted DNA's in alkaline solutions
Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte
ALTHOUGH ant-plant mutualisms have been described in many ecosystems, the magnitude of the direct benefits from such relationships are hard to quantify. In Bako National Park, Sarawak, Malaysia, stunted ‘kerangas’ forests occur on nutrient-poor sandstone hills1-3. As trees are widely spaced and have a sparse leaf area, a significant amount of light reaches the tree trunks and enables a diverse community of epiphytes to thrive there4. One of these epiphytes, Dischidia major (Vahl) Merr. (Asclepiadaceae), has evolved unusual methods for enhancing carbon and nitrogen acquisition. We show here that a mutualistic relationship exists between ants of the genus Philidris and their host, D. major. Using stable isotope analysis, we calculate that 39% of the carbon in occupied host plant leaves is derived from ant-related respiration, and that 29% of the host nitrogen is derived from debris deposited into the leaf cavities by ants. © 1995 Nature Publishing Groups. All Rights Reserved
Ultrafast Plasmonic Control of Second Harmonic Generation
Efficient frequency conversion techniques are crucial to the development of
plasmonic metasurfaces for information processing and signal modulation. In
principle, nanoscale electric-field confinement in nonlinear materials enables
higher harmonic conversion efficiencies per unit volume than those attainable
in bulk materials. Here we demonstrate efficient second-harmonic generation
(SHG) in a serrated nanogap plasmonic geometry that generates steep electric
field gradients on a dielectric metasurface. An ultrafast pump is used to
control plasmon-induced electric fields in a thin-film material with inversion
symmetry that, without plasmonic enhancement, does not exhibit an an even-order
nonlinear optical response. The temporal evolution of the plasmonic near-field
is characterized with ~100as resolution using a novel nonlinear interferometric
technique. The ability to manipulate nonlinear signals in a metamaterial
geometry as demonstrated here is indispensable both to understanding the
ultrafast nonlinear response of nanoscale materials, and to producing active,
optically reconfigurable plasmonic device
Reissner-Nordstrom and charged gas spheres
The main point of this paper is a suggestion about the proper treatment of
the photon gas in a theory of stellar structure and other plasmas. This problem
arises in the study of polytropic gas spheres, where we have already introduced
some innovations. The main idea, already advanced in the contextof neutral,
homogeneous, polytropic stellar models, is to base the theory firmly on a
variational principle. Another essential novelty is to let mass distribution
extend to infinity, the boundary between bulk and atmosphere being defined by
an abrupt change in the polytropic index, triggered by the density. The logical
next step in this program is to include the effect of radiation, which is a
very significant complication since a full treatment would have to include an
account of ionization, thus fieldsrepresenting electrons, ions, photons,
gravitons and neutral atoms as well. In way of preparation, we consider models
that are charged but homogeneous, involving only gravity, electromagnetism and
a single scalar field that represents both the mass and the electric charge; in
short, anon-neutral plasma. While this work only represents a stage in the
development of a theory of stars, without direct application to physical
systems, it does shed some light on the meaning of the Reissner-Nordstrom
solution of the modified Einstein-Maxwell equations., with an application to a
simple system.Comment: 19 pages, plain te
Fair scans of the seesaw. Consequences for predictions on LFV processes
Usual analyses based on scans of the seesaw parameter-space can be biassed
since they do not cover in a fair way the complete parameter-space. More
precisely, we show that in the common "R-parametrization", many acceptable
R-matrices, compatible with the perturbativity of Yukawa couplings, are
normally disregarded from the beginning, which produces biasses in the results.
We give a straightforward procedure to scan the space of complex R-matrices in
a complete way, giving a very simple rule to incorporate the perturbativity
requirement as a condition for the entries of the R-matrix, something not
considered before. As a relevant application of this, we show that the extended
believe that BR(mu --> e, gamma) in supersymmetric seesaw models depends
strongly on the value of theta_13 is an "optical effect" produced by such
biassed scans, and does not hold after a careful analytical and numerical
study. When the complete scan is done, BR(mu --> e, gamma) gets very
insensitive to theta_13. Moreover, the values of the branching ratio are
typically larger than those quoted in the literature, due to the large number
of acceptable points in the parameter-space which were not considered before.
Including (unflavoured) leptogenesis does not introduce any further dependence
on theta_13, although decreases the typical value of BR(mu --> e, gamma).Comment: 22 pages, 5 figure
- …
