8,419 research outputs found
KAPow: A System Identification Approach to Online Per-Module Power Estimation in FPGA Designs
In a modern FPGA system-on-chip design, it is often insufficient to simply assess the total power consumption of the entire circuit by design-time estimation or runtime power rail measurement. Instead, to make better runtime decisions, it is desirable to understand the power consumed by each individual module in the system. In this work, we combine boardlevel power measurements with register-level activity counting to build an online model that produces a breakdown of power consumption within the design. Online model refinement avoids the need for a time-consuming characterisation stage and also allows the model to track long-term changes to operating conditions. Our flow is named KAPow, a (loose) acronym for ‘K’ounting Activity for Power estimation, which we show to be accurate, with per-module power estimates as close to ±5mW of true measurements, and to have low overheads. We also demonstrate an application example in which a permodule power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide power consumption by over 8%
The Precursors and Products of Justice Climates: Group Leader Antecedents and Employee Attitudinal Consequences
Drawing on the organizational justice, organizational climate, leadership and personality, and social comparison theory literatures, we develop hypotheses about the effects of leader personality on the development of three types of justice climates (e.g., procedural, interpersonal, and informational), and the moderating effects of these climates on individual level justice- attitude relationships. Largely consistent with the theoretically-derived hypotheses, the results showed that leader (a) agreeableness was positively related to procedural, interpersonal and informational justice climates, (b) conscientiousness was positively related to a procedural justice climate, and (c) neuroticism was negatively related to all three types of justice climates. Further, consistent with social comparison theory, multilevel data analyses revealed that the relationship between individual justice perceptions and job attitudes (e.g., job satisfaction, commitment) was moderated by justice climate such that the relationships were stronger when justice climate was high
Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle
Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties
Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA.
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Blow-up profile of rotating 2D focusing Bose gases
We consider the Gross-Pitaevskii equation describing an attractive Bose gas
trapped to a quasi 2D layer by means of a purely harmonic potential, and which
rotates at a fixed speed of rotation . First we study the behavior of
the ground state when the coupling constant approaches , the critical
strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger
equation. We prove that blow-up always happens at the center of the trap, with
the blow-up profile given by the Gagliardo-Nirenberg solution. In particular,
the blow-up scenario is independent of , to leading order. This
generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014,
vol. 104, p. 141--156) in the non-rotating case. In a second part we consider
the many-particle Hamiltonian for bosons, interacting with a potential
rescaled in the mean-field manner w\int\_{\mathbb{R}^2} w(x) dx = 1\beta < 1/2a\_N \to a\_*N \to \infty$
Taming the zoo of supersymmetric quantum mechanical models
We show that in many cases nontrivial and complicated supersymmetric quantum
mechanical (SQM) models can be obtained from the simple model describing free
dynamics in flat complex space by two operations: (i) Hamiltonian reduction and
(ii) similarity transformation of the complex supercharges. We conjecture that
it is true for any SQM model.Comment: final version published in JHE
Pulmonary stretch receptor activity during partial liquid ventilation in cats with healthy lungs
Aim: To study whether pulmonary stretch receptor (PSR) activity in mechanically ventilated young cats with healthy lungs during partial liquid ventilation (PLV) is different from that during gas ventilation (GV). Methods: In 10 young cats (4.4 +/- 0.4 months, 2.3 +/- 0.3 kg; mean B SD), PSR instantaneous impulse frequency (PSR f(imp)) was recorded from single fibres in the vagal nerve during GV and PLV with perfluorocarbon (30 ml/kg) at increasing positive inspiratory pressures (PIP; 1.2, 1.8, 2.2 and 2.7 kPa), and at a positive end-expiratory pressure of 0.5 kPa. Results: All PSRs studied during GV maintained their phasic character with increased impulse frequency during inspiration during PLV. Peak PSR fimp was lower at PIP 1.2 kPa (p < 0.05) and at PIP 2.7 kPa (p = 0.10) during PLV than during GV, giving a lower number of PSR impulses at these two settings during PLV (p < 0.05). Conclusion: The phasic character of PSR activity is similar during GV and PLV. PSR activity is not higher during PLV than during GV in cats with healthy lungs, indicating no extensive stretching of the lung during PLV. Copyright (C) 2004 S. Karger AG, Basel
- …
