2,354 research outputs found
Computer skills and internet use in adults aged 50-74 years: influence of hearing difficulties
BACKGROUND
The use of personal computers (PCs) and the Internet to provide health care information and interventions has increased substantially over the past decade. Yet the effectiveness of such an approach is highly dependent upon whether the target population has both access and the skill set required to use this technology. This is particularly relevant in the delivery of hearing health care because most people with hearing loss are over 50 years (average age for initial hearing aid fitting is 74 years). Although PC skill and Internet use by demographic factors have been examined previously, data do not currently exist that examine the effects of hearing difficulties on PC skill or Internet use in older adults.
OBJECTIVE
To explore the effect that hearing difficulty has on PC skill and Internet use in an opportunistic sample of adults aged 50-74 years.
METHODS
Postal questionnaires about hearing difficulty, PC skill, and Internet use (n=3629) were distributed to adults aged 50-74 years through three family physician practices in Nottingham, United Kingdom. A subsample of 84 respondents completed a second detailed questionnaire on confidence in using a keyboard, mouse, and track pad. Summed scores were termed the "PC confidence index." The PC confidence index was used to verify the PC skill categories in the postal questionnaire (ie, never used a computer, beginner, and competent).
RESULTS
The postal questionnaire response rate was 36.78% (1298/3529) and 95.15% (1235/1298) of these contained complete information. There was a significant between-category difference for PC skill by PC confidence index (P<.001), thus verifying the three-category PC skill scale. PC and Internet use was greater in the younger respondents (50-62 years) than in the older respondents (63-74 years). The younger group's PC and Internet use was 81.0% and 60.9%, respectively; the older group's PC and Internet use was 54.0% and 29.8%, respectively. Those with slight hearing difficulties in the older group had significantly greater odds of PC use compared to those with no hearing difficulties (odds ratio [OR]=1.57, 95% confidence interval [CI] 1.06-2.30, P=.02). Those with moderate+ hearing difficulties had lower odds of PC use compared with those with no hearing difficulties, both overall (OR=0.58, 95% CI 0.39-0.87, P=.008) and in the younger group (OR=0.49, 95% CI 0.26-0.86, P=.008). Similar results were demonstrated for Internet use by age group (older: OR=1.57, 95% CI 0.99-2.47, P=.05; younger: OR=0.32, 95% CI 0.16-0.62, P=.001).
CONCLUSIONS
Hearing health care is of particular relevance to older adults because of the prevalence of age-related hearing loss. Our data show that older adults experiencing slight hearing difficulty have increased odds of greater PC skill and Internet use than those reporting no difficulty. These findings suggest that PC and Internet delivery of hearing screening, information, and intervention is feasible for people between 50-74 years who have hearing loss, but who would not typically present to an audiologist
A Survey on Continuous Time Computations
We provide an overview of theories of continuous time computation. These
theories allow us to understand both the hardness of questions related to
continuous time dynamical systems and the computational power of continuous
time analog models. We survey the existing models, summarizing results, and
point to relevant references in the literature
Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on
coarse measurements of spectral energy distributions in a few filters to
estimate the redshift distribution of source galaxies. In this regime, sample
variance, shot noise, and selection effects limit the attainable accuracy of
redshift calibration and thus of cosmological constraints. We present a new
method to combine wide-field, few-filter measurements with catalogs from deep
fields with additional filters and sufficiently low photometric noise to break
degeneracies in photometric redshifts. The multi-band deep field is used as an
intermediary between wide-field observations and accurate redshifts, greatly
reducing sample variance, shot noise, and selection effects. Our implementation
of the method uses self-organizing maps to group galaxies into phenotypes based
on their observed fluxes, and is tested using a mock DES catalog created from
N-body simulations. It yields a typical uncertainty on the mean redshift in
each of five tomographic bins for an idealized simulation of the DES Year 3
weak-lensing tomographic analysis of , which is a
60% improvement compared to the Year 1 analysis. Although the implementation of
the method is tailored to DES, its formalism can be applied to other large
photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA
Interior pathways of the North Atlantic meridional overturning circulation
To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.Dissertatio
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.
Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
- …
