12,886 research outputs found
Predictive Top-Down Integration of Prior Knowledge during Speech Perception
A striking feature of human perception is that our subjective experience depends not only on sensory information from the environment but also on our prior knowledge or expectations. The precise mechanisms by which sensory information and prior knowledge are integrated remain unclear, with longstanding disagreement concerning whether integration is strictly feedforward or whether higher-level knowledge influences sensory processing through feedback connections. Here we used concurrent EEG and MEG recordings to determine how sensory information and prior knowledge are integrated in the brain during speech perception. We manipulated listeners' prior knowledge of speech content by presenting matching, mismatching, or neutral written text before a degraded (noise-vocoded) spoken word. When speech conformed to prior knowledge, subjective perceptual clarity was enhanced. This enhancement in clarity was associated with a spatiotemporal profile of brain activity uniquely consistent with a feedback process: activity in the inferior frontal gyrus was modulated by prior knowledge before activity in lower-level sensory regions of the superior temporal gyrus. In parallel, we parametrically varied the level of speech degradation, and therefore the amount of sensory detail, so that changes in neural responses attributable to sensory information and prior knowledge could be directly compared. Although sensory detail and prior knowledge both enhanced speech clarity, they had an opposite influence on the evoked response in the superior temporal gyrus. We argue that these data are best explained within the framework of predictive coding in which sensory activity is compared with top-down predictions and only unexplained activity propagated through the cortical hierarchy
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
Verification of PCP-Related Computational Reductions in Coq
We formally verify several computational reductions concerning the Post
correspondence problem (PCP) using the proof assistant Coq. Our verifications
include a reduction of a string rewriting problem generalising the halting
problem for Turing machines to PCP, and reductions of PCP to the intersection
problem and the palindrome problem for context-free grammars. Interestingly,
rigorous correctness proofs for some of the reductions are missing in the
literature
The capability of B-RISK zone modelling software to simulate BRE multiple vehicle fire spread test
Building Research Establishment (BRE), United Kingdom have carried out several full-scale experiments of vehicle fire as to address the fire spread between vehicles. Thus, this paper aims to investigate the capability of the B-RISK zone modelling software to simulate the BRE multiple vehicle fire spread test. Using the information gathered from the work by BRE, series of simulations have been conducted. The results of the simulations are compared with the results from the experiments. Analysis shows that the predicted results from the B-RISK simulations give slightly faster time of ignition to the ones obtained using hand calculation. This could be due to B-RISK includes the radiation effect from the underside of the hot upper layer. As a conclusion, the analysis shows that using the B-RISK simulation software with additional radiation effects does not improve the result as compared to using the hand calculation considering the level of uncertainties which required to be assumed on some input parameters e.g. HRRPUA, heat of combustion, and/or latent heat of gasification
The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared
Quasars are thought to be powered by supermassive black holes accreting
surrounding gas. Central to this picture is a putative accretion disk which is
believed to be the source of the majority of the radiative output. It is well
known, however, that the most extensively studied disk model -- an optically
thick disk which is heated locally by the dissipation of gravitational binding
energy -- is apparently contradicted by observations in a few major respects.
In particular, the model predicts a specific blue spectral shape asymptotically
from the visible to the near-infrared, but this is not generally seen in the
visible wavelength region where the disk spectrum is observable. A crucial
difficulty was that, toward the infrared, the disk spectrum starts to be hidden
under strong hot dust emission from much larger but hitherto unresolved scales,
and thus has essentially been impossible to observe. Here we report
observations of polarized light interior to the dust-emiting region that enable
us to uncover this near-infrared disk spectrum in several quasars. The revealed
spectra show that the near-infrared disk spectrum is indeed as blue as
predicted. This indicates that, at least for the outer near-infrared-emitting
radii, the standard picture of the locally heated disk is approximately
correct. The model problems at shorter wavelengths should then be directed
toward a better understanding of the inner parts of the revealed disk. The
newly uncovered disk emission at large radii, with more future measurements,
will also shed totally new light on the unanswered critical question of how and
where the disk ends.Comment: published in Nature, 24 July 2008 issue. Supplementary Information
can be found at
http://www.mpifr-bonn.mpg.de/div/ir-interferometry/suppl_info.pdf Published
version can be accessed from
http://www.nature.com/nature/journal/v454/n7203/pdf/nature07114.pd
Seagrass can mitigate negative ocean acidification effects on calcifying algae
The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters
funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks
to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm
structure and experimental assistance.info:eu-repo/semantics/publishedVersio
B-L Cosmic Strings in Heterotic Standard Models
E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth
Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken
N=1 supersymmetric theories with the exact matter spectrum of the MSSM,
including three right-handed neutrinos and one Higgs-Higgs conjugate pair of
supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge
group of the standard model augmented by an additional gauged U(1)_{B-L}. Their
minimal content requires that the B-L symmetry be spontaneously broken by a
vacuum expectation value of at least one right-handed sneutrino. The soft
supersymmetry breaking operators can induce radiative breaking of the B-L gauge
symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is
shown that U(1)_{B-L} cosmic strings occur in this context, potentially with
both bosonic and fermionic superconductivity. We present a numerical analysis
that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed
sneutrino suggests that bosonic superconductivity will not occur in the
simplest vacua in this context. The electroweak phase transition also disallows
fermion superconductivity, although substantial bound state fermion currents
can exist.Comment: 41 pages, 5 figure
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
On Conceptually Simple Algorithms for Variants of Online Bipartite Matching
We present a series of results regarding conceptually simple algorithms for
bipartite matching in various online and related models. We first consider a
deterministic adversarial model. The best approximation ratio possible for a
one-pass deterministic online algorithm is , which is achieved by any
greedy algorithm. D\"urr et al. recently presented a -pass algorithm called
Category-Advice that achieves approximation ratio . We extend their
algorithm to multiple passes. We prove the exact approximation ratio for the
-pass Category-Advice algorithm for all , and show that the
approximation ratio converges to the inverse of the golden ratio
as goes to infinity. The convergence is
extremely fast --- the -pass Category-Advice algorithm is already within
of the inverse of the golden ratio.
We then consider a natural greedy algorithm in the online stochastic IID
model---MinDegree. This algorithm is an online version of a well-known and
extensively studied offline algorithm MinGreedy. We show that MinDegree cannot
achieve an approximation ratio better than , which is guaranteed by any
consistent greedy algorithm in the known IID model.
Finally, following the work in Besser and Poloczek, we depart from an
adversarial or stochastic ordering and investigate a natural randomized
algorithm (MinRanking) in the priority model. Although the priority model
allows the algorithm to choose the input ordering in a general but well defined
way, this natural algorithm cannot obtain the approximation of the Ranking
algorithm in the ROM model
- …
