5,344 research outputs found
The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia
The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart
The oxygen isotope effect on critical temperature in superconducting copper oxides
The isotope effect provided a crucial key to the development of the BCS
(Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for
conventional superconductors. In superconducting cooper oxides (cuprates)
showing an unconventional type of superconductivity, the oxygen isotope effect
is very peculiar: the exponential coefficient strongly depends on doping level.
No consensus has been reached so far on the origin of the isotope effect in the
cuprates. Here we show that the oxygen isotope effect in cuprates is in
agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction
Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets
This paper tackles important aspects of comets dynamics from a statistical
point of view. Existing methodology uses numerical integration for computing
planetary perturbations for simulating such dynamics. This operation is highly
computational. It is reasonable to wonder whenever statistical simulation of
the perturbations can be much more easy to handle. The first step for answering
such a question is to provide a statistical study of these perturbations in
order to catch their main features. The statistical tools used are order
statistics and heavy tail distributions. The study carried out indicated a
general pattern exhibited by the perturbations around the orbits of the
important planet. These characteristics were validated through statistical
testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and
Astrophysic
Maintaining genetic integrity of coexisting wild and domestic populations : Genetic differentiation between wild and domestic Rangifer with long traditions of intentional interbreeding
The funding for the fieldwork and laboratory work for this study was provided by the ERC Advanced Grant 295458 Arctic Domus (PI D.G. Anderson). The writing and analysis was supported by ESRC ES-M0110548-1 JPI HUMANOR (PI D.G. Anderson). The sample set for Lake Nichatka was collected and deposited under a research programme of the Norwegian Institute for Nature Research. We thank Liv Midthjell for skilful laboratory analyses, Konstantin Klokov for help sourcing statistics on Russian reindeer populations, and Jan Heggenes for useful comments on an earlier version of this paper. A full list of project participants is in Appendix 2.Peer reviewedPublisher PD
A Variational Approach to Nonlocal Exciton-Phonon Coupling
In this paper we apply variational energy band theory to a form of the
Holstein Hamiltonian in which the influence of lattice vibrations (optical
phonons) on both local site energies (local coupling) and transfers of
electronic excitations between neighboring sites (nonlocal coupling) is taken
into account. A flexible spanning set of orthonormal eigenfunctions of the
joint exciton-phonon crystal momentum is used to arrive at a variational
estimate (bound) of the ground state energy for every value of the joint
crystal momentum, yielding a variational estimate of the lowest polaron energy
band across the entire Brillouin zone, as well as the complete set of polaron
Bloch functions associated with this band. The variation is implemented
numerically, avoiding restrictive assumptions that have limited the scope of
previous assaults on the same and similar problems. Polaron energy bands and
the structure of the associated Bloch states are studied at general points in
the three-dimensional parameter space of the model Hamiltonian (electronic
tunneling, local coupling, nonlocal coupling), though our principal emphasis
lay in under-studied area of nonlocal coupling and its interplay with
electronic tunneling; a phase diagram summarizing the latter is presented. The
common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure
Directed current in the Holstein system
We propose a mechanism to rectify charge transport in the semiclassical
Holstein model. It is shown that localised initial conditions, associated with
a polaron solution, in conjunction with a nonreversion symmetric static
electron on-site potential constitute minimal prerequisites for the emergence
of a directed current in the underlying periodic lattice system. In particular,
we demonstrate that for unbiased spatially localised initial conditions,
violation of parity prevents the existence of pairs of counter-propagating
trajectories, thus allowing for a directed current despite the
time-reversibility of the equations of motion. Occurrence of long-range
coherent charge transport is demonstrated
Atomic States Entanglement in Carbon Nanotubes
The entanglement of two atoms (ions) doped into a carbon nanotube has been
investigated theoretically. Based on the photon Green function formalism for
quantizing electromagnetic field in the presence of carbon nanotubes,
small-diameter metallic nanotubes are shown to result in a high degree of the
two-qubit atomic entanglement for long times due to the strong atom-field
coupling.Comment: 4 pages, 2 figure
Base pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium
We study the nonlinear dynamics of a protein-DNA molecular system by treating
DNA as a set of two coupled linear chains and protein in the form of a single
linear chain sliding along the DNA at the physiological temperature in a
viscous medium. The nonlinear dynamics of the above molecular system in general
is governed by a perturbed nonlinear Schr\"{o}dinger equation. In the
non-viscous limit, the equation reduces to the completely integrable nonlinear
Schr\"{o}dinger (NLS) equation which admits N-soliton solutions. The soliton
excitations of the DNA bases make localized base pair opening and travel along
the DNA chain in the form of a bubble. This may represent the bubble generated
during the transcription process when an RNA-polymerase binds to a promoter
site in the DNA double helical chain. The perturbed NLS equation is solved
using a perturbation theory by treating the viscous effect due to surrounding
as a weak perturbation and the results show that the viscosity of the solvent
in the surrounding damps out the amplitude of the soliton.Comment: 4. Submitted to Phys. Rev.
Influence of the sign of the coupling on the temperature dependence of optical properties of one-dimensional exciton models
A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide
Einstein--Yang--Mills strings
We present globally regular vortex-type solutions for a pure SU(2) Yang-Mills
field coupled to gravity in 3+1 dimensions. These gravitating vortices are
static, cylindrically symmetric and purely magnetic, and they support a
non-zero chromo-magnetic flux through their cross section. In addition, they
carry a constant non-Abelian current, and so in some sense they are analogs of
the superconducting cosmic strings. They have a compact central core dominated
by a longitudinal magnetic field and endowed with an approximately Melvin
geometry. This magnetic field component gets color screened in the exterior
part of the core, outside of which the fields approach exponentially fast those
of the electrovacuum Bonnor solutions with a circular magnetic field. In the
far field zone the solutions are not asymptotically flat but tend to vacuum
Kasner metrics.Comment: 9 pages, 3 figure
- …
