55 research outputs found

    A Study on Phenology Detection of Corn in Northeastern China with Fused Remote Sensing Data

    Get PDF
    Accurate phenology information detection is the basis for other remote-sensing based agriculture applications. So far, there have been a lot of phenology estimation models based on remote-sensing data, but little attention was paid to microscopic mechanism of crops and the environmental factors. The main purpose of this chapter is to apply a new phenology detection model, which combined physical mechanism-based crop models with remote-sensing data to detect the critical phenological stages of corn in Northeast China (Jilin and Liaoning Provinces). Compared to the phenology observations from the agriculture meteorological stations, the corn phenology estimation accuracy in Northeast China using only MODIS data is much lower than that in the US field sites. The main reason might be the small size of single piece of cropland in northeastern China, which led to the mixed MODIS pixels. Accordingly, Landsat and MODIS data fusion methods were applied to get time-series images with Landsat-like spatial resolution and MODIS-like temporal resolution, and quantitative and qualitative validation was conducted to evaluate and verify the accuracy of the data fusion. The results show that data fusion of Landsat and MODIS improved the spatial resolution and decreased the influence of mixed pixels

    A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data

    Get PDF
    Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness, and growing season length) often termed “land surface phenology,” as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data-processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multiscale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams, and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization

    Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Get PDF
    Air temperature (Ta) is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature (LST)) products are widely used to estimate daily Ta. However, only daytime LST (Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature), respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September) from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc

    Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Get PDF
    Air temperature (Ta) is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature (LST)) products are widely used to estimate daily Ta. However, only daytime LST (Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature), respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September) from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc

    A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal Resolution from MODIS Multi-Temporal Composite Products

    Get PDF
    Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data to minimize the negative influence of noise over a given compositing time interval. However, VI time series with high temporal resolution were preferred by many applications such as vegetation phenology and land change detections. This study presents a novel strategy named DAVIR-MUTCOP (DAily Vegetation Index Reconstruction based on MUlti-Temporal COmposite Products) method for normalized difference vegetation index (NDVI) time-series reconstruction with high temporal resolution. The core of the DAVIR-MUTCOP method is a combination of the advantages of both original daily and temporally composite products, and selecting more daily observations with high quality through the temporal variation of temporally corrected composite data. The DAVIR-MUTCOP method was applied to reconstruct high-quality NDVI time-series using MODIS multi-temporal products in two study areas in the continental United States (CONUS), i.e., three field experimental sites near Mead, Nebraska from 2001 to 2012 and forty-six AmeriFlux sites evenly distributed across CONUS from 2006 to 2010. In these two study areas, the DAVIR-MUTCOP method was also compared to several commonly used methods, i.e., the Harmonic Analysis of Time- Series (HANTS) method using original daily observations, Savitzky–Golay (SG) filtering using daily observations with cloud mask products as auxiliary data, and SG filtering using temporally corrected composite data. The results showed that the DAVIR-MUTCOP method significantly improved the temporal resolution of the reconstructed NDVI time series. It performed the best in reconstructing NDVI time-series across time and space (coefficient of determination (R2 = 0.93 ~ 0.94) between reconstructed NDVI and ground-observed LAI). DAVIR-MUTCOP method presented the highest robustness and accuracy with the change of the filtering parameter (R2 = 0.99 ~ 1.00, bias = 0.001, root mean square error (RMSE) = 0.020). Only MODIS data were used in this study; nevertheless, the DAVIR-MUTCOP method proposed a universal and potential way to reconstruct daily time series of other VIs or from other operational sensors, e.g., AVHRR and VIIRS

    Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Get PDF
    Air temperature (Ta) is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature (LST)) products are widely used to estimate daily Ta. However, only daytime LST (Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature), respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September) from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc

    Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Get PDF
    Air temperature (Ta) is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature (LST)) products are widely used to estimate daily Ta. However, only daytime LST (Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature), respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September) from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc

    Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Get PDF
    Air temperature (Ta) is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature (LST)) products are widely used to estimate daily Ta. However, only daytime LST (Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature), respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September) from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc

    Variation characteristics of biomarkers in shale products in thermal simulation: a case study of the Shahejie Formation in the Bohai Bay Basin

    Get PDF
    This study focuses on shale samples from the medium-deep lacustrine shale in the third member of the Shahejie Formation, Bohai Bay Basin. Thermal simulation experiments were conducted using gold tubes to study hydrocarbon generation. The results indicate that shale biomarkers vary at different thermal evolution stages and provide distinct geochemical indications. Compared with saturated hydrocarbons, aromatic hydrocarbon parameters can better indicate the maturity of high- to overmature crude oil. The correlation between the parameters of aromatic hydrocarbon -biomarkers and the maturity of crude oil is as follows: methylphenanthrene parameters (MPI1), 4-MDBT/1-MDBT, perene/benzo[e]pyrene, methylphenanthrene ratio (MPR), benzofluoranthene/benzo[e]pyrene, trimethylnaphthalene ratio (TMNr), and tetramethylnaphthalene ratio (TeMNr). The variation in several parameters indicates that 345â445 °C is thepeak oil generation window (the corresponding Ro is about 0.6â1.3%), during which hydrocarbon expulsion efficiency increased greatly, and residual hydrocarbons accumulate -massively. This research provides a basis for evaluating shale oil and gas resources. Shale with a vitrinite reflectance of 0.6â1.3% is the most beneficial for exploration and development
    corecore