1,163 research outputs found
Engineering Heteromaterials to Control Lithium Ion Transport Pathways.
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries
Lattice strain effects on the optical properties of MoS2 nanosheets.
"Strain engineering" in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS2 to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS2 nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS2 nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS2
First IBEX observations of the terrestrial plasma sheet and a possible disconnection event
The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of energetic neutral atoms (ENAs) emitted from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the magnetosheath stagnation region at the nose of the magnetosphere. This study provides the first IBEX images of the ENA emissions from the nightside magnetosphere and plasma sheet. We show images from two IBEX orbits: one that displays typical plasma sheet emissions, which correlate reasonably well with a model magnetic field, and a second that shows a significant intensification that may indicate a near-Earth (similar to 10 R(E) behind the Earth) disconnection event. IBEX observations from similar to 0.5-6 keV indicate the simultaneous addition of both a hot (several keV) and colder (similar to 700 eV) component during the intensification; if IBEX directly observed magnetic reconnection in the magnetotail, the hot component may signify the plasma energization
Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer
The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon
Strong tuning of Rashba spin orbit interaction in single InAs nanowires
A key concept in the emerging field of spintronics is the gate voltage or
electric field control of spin precession via the effective magnetic field
generated by the Rashba spin orbit interaction. Here, we demonstrate the
generation and tuning of electric field induced Rashba spin orbit interaction
in InAs nanowires where a strong electric field is created either by a double
gate or a solid electrolyte surrounding gate. In particular, the electrolyte
gating enables six-fold tuning of Rashba coefficient and nearly three orders of
magnitude tuning of spin relaxation time within only 1 V of gate bias. Such a
dramatic tuning of spin orbit interaction in nanowires may have implications in
nanowire based spintronic devices.Comment: Nano Letters, in pres
Earth‐Moon‐Mars Radiation Environment Module framework
[1] We are preparing to return humans to the Moon and setting the stage for exploration to Mars and beyond. However, it is unclear if long missions outside of low-Earth orbit can be accomplished with acceptable risk. The central objective of a new modeling project, the Earth-Moon-Mars Radiation Exposure Module (EMMREM), is to develop and validate a numerical module for characterizing time-dependent radiation exposure in the Earth-Moon-Mars and interplanetary space environments. EMMREM is being designed for broad use by researchers to predict radiation exposure by integrating over almost any incident particle distribution from interplanetary space. We detail here the overall structure of the EMMREM module and study the dose histories of the 2003 Halloween storm event and a June 2004 event. We show both the event histories measured at 1 AU and the evolution of these events at observer locations beyond 1 AU. The results are compared to observations at Ulysses. The model allows us to predict how the radiation environment evolves with radial distance from the Sun. The model comparison also suggests areas in which our understanding of the physics of particle propagation and energization needs to be improved to better forecast the radiation environment. Thus, we introduce the suite of EMMREM tools, which will be used to improve risk assessment models so that future human exploration missions can be adequately planned for
Probing shock geometry via the charge to mass ratio dependence of heavy ion spectra from multiple spacecraft observations of the 2013 November 4 event
In large Solar Energetic Particle (SEP) events, ions can be accelerated at coronal mass ejection (CME)-driven shocks to very high energies. The spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in terms of energy/nucleon, they can be shifted relative to each other to make the spectral breaks align. The amount of shift is charge to mass ratio (Q/A) dependent and varies from event to event. This can be understood if the spectra of heavy ions are organized by the diffusion coefficients (Cohen et al. 2005). In the work of Li et al. (2009), the Q/A dependence of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. In this work, we examine one SEP event which occurred on 2013 November 4. We study the Q/A dependence of the energy scaling for heavy ion spectra using helium, oxygen and iron ions. Observations from STEREO-A, STEREO-B and ACE are examined. We find that the scalings are different for different spacecraft. We suggest that this is because ACE, STEREO-A and STEREO-B are connected to different parts of the shock that have different shock geometries. Our analysis indicates that studying the Q/A scaling of in-situ particle spectra can serve as a powerful tool to remotely examine the shock geometry for large SEP events
“Locker Room Talk” or Sexual Harassment? The Push for a Federal Modification of the Severe or Pervasive Standard
Bond Valence Sum Analysis on Compounds Prepared by Topochemical Manipulation
The Bond Valence theory of Brown (1978) has been extensively used to correlate metal oxidation state to coordination environment in solids. Although the bond valence sum (BVS) appears to be extremely useful to coordination chemists, it has not often been applied as an alternative measure of refinement quality. In this work, previously reported six layered perovskite compounds including, RbLaNb2O7, Rb2LaNb2O7, Rb2SxLaNb2O7 (x ≤ 0.8), NaLaNb2O7, (Cs2Cl)LaNb2O7, and (FeCl)LaNb2O7, that have been prepared by topochemical manipulation and their structures have been determined by Rietveld refinements were analyzed. Our focus was to explore whether the determination of oxidation state using the bond distances derived from the Rietveld refinement method could be used to validate structure determination along with the reported goodness of fit values, χ2 , in the published structure. Good agreement between the calculated and the expected oxidation states would provide support for the chemical formula and the accuracy of a crystal structure determination.
We applied the concept of the BVS method for selective metal ions including, niobium (Nb), lanthanum (La), rubidium (Rb), sodium (Na), cesium (Cs), sulfur (S), and iron (Fe). For all these metal ions, the final values resulted from BVS calculations for the six compounds overall showed good agreement between the calculated and the expected oxidation. Although this method is empirical, it can nevertheless help us to identify important trends when a series of related and similarly prepared samples are prepared
- …
