83 research outputs found

    Randomly Branched Polymers and Conformal Invariance

    Full text link
    We argue that the field theory that descibes randomly branched polymers is not generally conformally invariant in two dimensions at its critical point. In particular, we show (i) that the most natural formulation of conformal invariance for randomly branched polymers leads to inconsistencies; (ii) that the free field theory obtained by setting the potential equal to zero in the branched polymer field theory is not even classically conformally invariant; and (iii) that numerical enumerations of the exponent θ(α)\theta (\alpha ), defined by TN(α)λNNθ(α)+1T_N(\alpha )\sim \lambda^NN^{-\theta (\alpha ) +1}, where TN(α)T_N(\alpha ) is number of distinct configuratations of a branched polymer rooted near the apex of a cone with apex angel α\alpha, indicate that θ(α)\theta (\alpha ) is not linear in 1/α1/\alpha contrary to what conformal invariance leads one to expect.Comment: 1 graph not included, SPhT /92/145, The Tex Macros have been changed. In the present version only jnl.tex is needed. It can be obtained directly from the bulletin boar

    Directed Branched Polymer near an Attractive Line

    Full text link
    We study the adsorption-desorption phase transition of directed branched polymer in d+1d+1 dimensions in contact with a line by mapping it to a dd dimensional hard core lattice gas at negative activity. We solve the model exactly in 1+1 dimensions, and calculate the crossover exponent related to fraction of monomers adsorbed at the critical point of surface transition, and we also determine the density profile of the polymer in different phases. We also obtain the value of crossover exponent in 2+1 dimensions and give the scaling function of the sticking fraction for 1+1 and 2+1 dimensional directed branched polymer.Comment: 19 pages, 4 figures, accepted for publication in J. Phys. A:Math. Ge

    Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell

    Full text link
    We analize the statistical mechanics of a long-range antiferromagnetic model defined on a D-dimensional hypercube, both at zero and finite temperatures. The associated Hamiltonian is derived from a recently proposed complexity measure of Boolean functions, in the context of neural networks learning processes. We show that, depending of the value of D, the system either presents a low temperature antiferromagnetic stable phase or the global antiferromagnetic order disappears at any temperature. In the last case the ground state is an infinitely degenerated non-glassy one, composed by two equal size anti-aligned antiferromagnetic domains. We also present some results for the ferromagnetic version of the model.Comment: 8 pages, 5 figure

    Estimation of the order parameter exponent of critical cellular automata using the enhanced coherent anomaly method.

    Full text link
    The stochastic cellular automaton of Rule 18 defined by Wolfram [Rev. Mod. Phys. 55 601 (1983)] has been investigated by the enhanced coherent anomaly method. Reliable estimate was found for the β\beta critical exponent, based on moderate sized (n7n \le 7) clusters.Comment: 6 pages, RevTeX file, figure available from [email protected]

    Massive Field-Theory Approach to Surface Critical Behavior in Three-Dimensional Systems

    Full text link
    The massive field-theory approach for studying critical behavior in fixed space dimensions d<4d<4 is extended to systems with surfaces.This enables one to study surface critical behavior directly in dimensions d<4d<4 without having to resort to the ϵ\epsilon expansion. The approach is elaborated for the representative case of the semi-infinite |\bbox{\phi}|^4 nn-vector model with a boundary term {1/2} c_0\int_{\partial V}\bbox{\phi}^2 in the action. To make the theory uv finite in bulk dimensions 3d<43\le d<4, a renormalization of the surface enhancement c0c_0 is required in addition to the standard mass renormalization. Adequate normalization conditions for the renormalized theory are given. This theory involves two mass parameter: the usual bulk `mass' (inverse correlation length) mm, and the renormalized surface enhancement cc. Thus the surface renormalization factors depend on the renormalized coupling constant uu and the ratio c/mc/m. The special and ordinary surface transitions correspond to the limits m0m\to 0 with c/m0c/m\to 0 and c/mc/m\to\infty, respectively. It is shown that the surface-enhancement renormalization turns into an additive renormalization in the limit c/mc/m\to\infty. The renormalization factors and exponent functions with c/m=0c/m=0 and c/m=c/m=\infty that are needed to determine the surface critical exponents of the special and ordinary transitions are calculated to two-loop order. The associated series expansions are analyzed by Pad\'e-Borel summation techniques. The resulting numerical estimates for the surface critical exponents are in good agreement with recent Monte Carlo simulations. This also holds for the surface crossover exponent Φ\Phi.Comment: Revtex, 40 pages, 3 figures, and 8 pictograms (included in equations

    Series expansions of the percolation probability on the directed triangular lattice

    Full text link
    We have derived long series expansions of the percolation probability for site, bond and site-bond percolation on the directed triangular lattice. For the bond problem we have extended the series from order 12 to 51 and for the site problem from order 12 to 35. For the site-bond problem, which has not been studied before, we have derived the series to order 32. Our estimates of the critical exponent β\beta are in full agreement with results for similar problems on the square lattice, confirming expectations of universality. For the critical probability and exponent we find in the site case: qc=0.4043528±0.0000010q_c = 0.4043528 \pm 0.0000010 and β=0.27645±0.00010\beta = 0.27645 \pm 0.00010; in the bond case: qc=0.52198±0.00001q_c = 0.52198\pm 0.00001 and β=0.2769±0.0010\beta = 0.2769\pm 0.0010; and in the site-bond case: qc=0.264173±0.000003q_c = 0.264173 \pm 0.000003 and β=0.2766±0.0003\beta = 0.2766 \pm 0.0003. In addition we have obtained accurate estimates for the critical amplitudes. In all cases we find that the leading correction to scaling term is analytic, i.e., the confluent exponent Δ=1\Delta = 1.Comment: 26 pages, LaTeX. To appear in J. Phys.

    On surface properties of two-dimensional percolation clusters

    Full text link
    The two-dimensional site percolation problem is studied by transfer-matrix methods on finite-width strips with free boundary conditions. The relationship between correlation-length amplitudes and critical indices, predicted by conformal invariance, allows a very precise determination of the surface decay-of-correlations exponent, ηs=0.6664±0.0008\eta_s = 0.6664 \pm 0.0008, consistent with the analytical value ηs=2/3\eta_s = 2/3. It is found that a special transition does not occur in the case, corroborating earlier series results. At the ordinary transition, numerical estimates are consistent with the exact value ys=1y_s = -1 for the irrelevant exponent.Comment: 8 pages, LaTeX with Institute of Physics macros, to appear in Journal of Physics

    Mindful Leadership in Interprofessional Teams

    Get PDF
    In interprofessional health teams the need for coordinating leadership and the (dynamical) need for appropriate clinical expertise to come to the fore involves a tension between the traditional role of the team leader as authority figure and the collaborative leadership which enables individual team members to emerge as leaders in their area of expertise and to relinquish this leadership as needed. Complexity analysis points to an understanding of leadership as an emergent property of the team. We discuss how a framework of mindful leadership addresses the implications of this emergent leadership model, and how Appreciative Inquiry provides a structured process for examination of team vision, values and behaviour standards

    Mindful Leadership in Interprofessional Teams

    Get PDF
    Large interprofessional teams are complex systems in which the expertise of the individual team members interact with the health situation and the external environment in the delivery of modern day health care. The need for coordinating leadership and the (dynamical) need for appropriate expertise to come to the fore involves a tension between the traditional role of the team leader as authority figure and the collaborative leadership preferred by individual team members in their field of expertise. Mindful leadership may provide the leader attributes that allow for and facilitate emergent team structures to meet system changes required in implementing patient and family-centred care. In this paper, we discuss the nature of these attributes and their implications for models of interprofessional teams

    Series expansions of the percolation probability for directed square and honeycomb lattices

    Full text link
    We have derived long series expansions of the percolation probability for site and bond percolation on directed square and honeycomb lattices. For the square bond problem we have extended the series from 41 terms to 54, for the square site problem from 16 terms to 37, and for the honeycomb bond problem from 13 terms to 36. Analysis of the series clearly shows that the critical exponent β\beta is the same for all the problems confirming expectations of universality. For the critical probability and exponent we find in the square bond case, qc=0.3552994±0.0000010q_c = 0.3552994\pm 0.0000010, β=0.27643±0.00010\beta = 0.27643\pm 0.00010, in the square site case qc=0.294515±0.000005q_c = 0.294515 \pm 0.000005, β=0.2763±0.0003\beta = 0.2763 \pm 0.0003, and in the honeycomb bond case qc=0.177143±0.000002q_c = 0.177143 \pm 0.000002, β=0.2763±0.0002\beta = 0.2763 \pm 0.0002. In addition we have obtained accurate estimates for the critical amplitudes. In all cases we find that the leading correction to scaling term is analytic, i.e., the confluent exponent Δ=1\Delta = 1.Comment: LaTex with epsf, 26 pages, 2 figures and 2 tables in Postscript format included (uufiled). LaTeX version of tables also included for the benefit of those without access to PS printers (note that the tables should be printed in landscape mode). Accepted by J. Phys.
    corecore