250 research outputs found

    Tuning the Josephson current in carbon nanotubes with the Kondo effect

    Full text link
    We investigate the Josephson current in a single wall carbon nanotube connected to superconducting electrodes. We focus on the parameter regime in which transport is dominated by Kondo physics. A sizeable supercurrent is observed for odd number of electrons on the nanotube when the Kondo temperature Tk is sufficiently large compared to the superconducting gap. On the other hand when, in the center of the Kondo ridge, Tk is slightly smaller than the superconducting gap, the supercurrent is found to be extremely sensitive to the gate voltage Vbg. Whereas it is largely suppressed at the center of the ridge, it shows a sharp increase at a finite value of Vbg. This increase can be attributed to a doublet-singlet transition of the spin state of the nanotube island leading to a pi shift in the current phase relation. This transition is very sensitive to the asymmetry of the contacts and is in good agreement with theoretical predictions.Comment: 5 pages, 4 figure

    High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit

    Full text link
    By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction \textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Josephson junction at the resonant frequencies. The admittance components show frequency dependent singularities related to the superconducting density of state while the noise exhibits a strong frequency dependence, consistent with theoretical predictions. The circuit also allows to probe separately the emission and absorption noise in the quantum regime of the superconducting resonant circuit at equilibrium. At low temperature the resonant circuit exhibits only absorption noise related to zero point fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure

    0-π\pi quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy

    Full text link
    We investigate experimentally the supercurrent in a clean carbon nanotube quantum dot, close to orbital degeneracy, connected to superconducting leads in a regime of strong competition between local electronic correlations and superconducting proximity effect. For an odd occupancy of the dot and intermediate coupling to the reservoir, the Kondo effect can develop in the normal state and screen the local magnetic moment of the dot. This leads to singlet-doublet transitions that strongly affect the Josephson effect in a single-level quantum dot: the sign of the supercurrent changes from positive to negative (0 to π\pi-junction). In the regime of strongest competition between the Kondo effect and proximity effect, meaning that the Kondo temperature equals the superconducting gap, the magnetic state of the dot undergoes a first order quantum transition induced by the superconducting phase difference across the junction. This is revealed experimentally by anharmonic current-phase relations. In addition, the very specific electronic configuration of clean carbon nanotubes, with two nearly orbitally degenerated states, leads to different physics depending whether only one or both quasi-degenerate upper levels of the dots participate to transport, which is determined by their occupancy and relative widths. When the transport of Cooper pairs takes place through only one of these levels, we find that the phase diagram of the phase-dependent 0-π\pi transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case were two levels participate to transport, the nanotube Josephson current exhibits a continuous 0-π\pi transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.Comment: 14 pages, 12 figure

    Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules

    Full text link
    We have altered the superconductivity of a suspended rope of single walled carbon nanotubes, by coating it with organic polymers. Upon coating, the normal state resistance of the rope changes by less than 20 percent. But superconductivity, which on the bare rope shows up as a substantial resistance decrease below 300 mK, is gradualy suppressed. We correlate this to the suppression of radial breathing modes, measured with Raman Spectroscopy on suspended Single and Double-walled carbon nanotubes. This points to the breathing phonon modes as being responsible for superconductivity in carbon nanotubes

    Diamagnetic orbital response of mesoscopic silver rings

    Full text link
    We report measurements of the flux-dependent orbital magnetic susceptibility of an ensemble of 10^5 disconnected silver rings at 217 MHz. Because of the strong spin-orbit scattering rate in silver this experiment is a test of existing theories on orbital magnetism. Below 100 mK the rings exhibit a magnetic signal with a flux periodicity of h/2 e consistent with averaged persistent currents, whose amplitude is estimated to be of the order of 0.3 nA. The sign of the oscillations indicates diamagnetism in the vicinity of zero magnetic field. This sign is not consistent with theoretical predictions for average persistent currents unless considering attractive interactions in silver. We propose an alternative interpretation taking into account spin orbit scattering and finite frequency.Comment: 4 pages, 4 figures, revtex4, accepted for publication in Physical Review Letter

    Magneto-polarisability of mesoscopic systems

    Full text link
    In order to understand how screening is modified by electronic interferences in a mesoscopic isolated system, we have computed both analytically and numerically the average thermodynamic and time dependent polarisabilities of two dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux. Two geometries have been considered: rings and squares. Mesoscopic correction to screening are taken into account in a self consistent way, using the response function formalism. The role of the statistical ensemble (canonical and grand canonical), disorder and frequency have been investigated. We have also computed first order corrections to the polarisability due to electron-electron interactions. Our main results concern the diffusive regime. In the canonical ensemble, there is no flux dependence polarisability when the frequency is smaller than the level spacing. On the other hand, in the grand canonical ensemble for frequencies larger than the mean broadening of the energy levels (but still small compared to the level spacing), the polarisability oscillates with flux, with the periodicity h/2eh/2e. The order of magnitude of the effect is given by δα/α(λs/Wg)\delta \alpha/\alpha \propto (\lambda_s/Wg), where λ\lambda is the Thomas Fermi screening length, WW the width of the rings or the size of the squares and gg their average dimensionless conductance. This magnetopolarisability of Aharonov-Bohm rings has been recently measured experimentally \cite{PRL_deblock00} and is in good agreement with our grand canonical result.Comment: 12 pages, 10 figures, revte

    Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    Full text link
    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.Comment: 8 pages, 5 figure

    AC Josephson effect and resonant Cooper pair tunneling emission of a Cooper Pair Transistor

    Full text link
    We measure the high-frequency emission of a single Cooper pair transistor(SCPT) in the regime where transport is only due to tunneling of Cooper pairs. This is achieved by coupling on-chip the SCPT to a superconductor-insulator-superconductor junction and by measuring the photon assisted tunneling current of quasiparticles across the junction. This technique allows a direct detection of the AC Josephson effect of the SCPT and provides evidence of Landau-Zener transitions for proper gate voltage. The emission in the regime of resonant Cooper pair tunneling is also investigated. It is interpreted in terms of transitions between charge states coupled by the Josephson effect.Comment: Revtex4, 5 pages, 4 figures, final versio
    corecore