547 research outputs found

    Pioneer Jupiter orbiter probe mission 1980, probe description

    Get PDF
    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives

    The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    Get PDF
    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations

    Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    Get PDF
    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented

    Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli

    Get PDF
    Georgios Skretas, Sean Carroll, and George Georgiou are with the Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA -- George Georgiou is with the Department of Biomedical Engineering, University of Texas at Austin and the Section of Microbiology and Molecular Genetics, University of Texas at Austin, Austin, TX 78712, USA -- Georgios Skretas and George Georgiou are with the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA -- Shawn DeFrees, Karl F. Johnson, and Marc F. Schwartz are with Neose Technologies Inc, 102 Rock Road, Horsham, PA, 19044, USABackground: The presence of terminal, surface-exposed sialic acid moieties can greatly enhance the in vivo half-life of glycosylated biopharmaceuticals and improve their therapeutic efficacy. Complete and homogeneous sialylation of glycoproteins can be efficiently performed enzymically in vitro but this process requires large amounts of catalytically active sialyltransferases. Furthermore, standard microbial hosts used for large-scale production of recombinant enzymes can only produce small quantities of glycosyltransferases of animal origin, which lack catalytic activity. Results and conclusion: In this work, we have expressed the human sialyltransferase ST6GalNAc I (ST6), an enzyme that sialylates O-linked glycoproteins, in Escherichia coli cells. We observed that wild-type bacterial cells are able to produce only very small amounts of soluble ST6 enzyme. We have found, however, that engineered bacterial strains which possess certain types of oxidative cytoplasm or which co-express the molecular chaperones/co-chaperones trigger factor, DnaK/DnaJ, GroEL/GroES, and Skp, can produce greatly enhanced amounts of soluble ST6. Furthermore, we have developed a novel high-throughput assay for the detection of sialyltransferase activity and used it to demonstrate that the bacterially expressed ST6 enzyme is active and able to transfer sialic acid onto a desialylated O-glycoprotein, bovine submaxillary mucin. To the best of our knowledge, this is the first example of expression of active human sialyltransferase in bacteria. This system may be used as a starting point for the evolution of sialyltransferases with better expression characteristics or altered donor/acceptor specificities.Chemical EngineeringBiomedical EngineeringInstitute for Cellular and Molecular [email protected]

    Knitting the Sleeve of Care

    Get PDF

    Three Poems

    Get PDF

    Imaginary Ancestors: The Woman with Fabled Hair

    Get PDF

    Settling into the A-Frame

    Full text link

    For Ed Harkness Lost in a Contributor\u27s Note in the Quarterly West

    Get PDF

    Leslie Ullman, \u3ci\u3eNatural Histories\u3c/i\u3e

    Get PDF
    corecore