7,396 research outputs found

    A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis.

    Get PDF
    A new method for the P-arylation of aryldiazonium salts with H-phosphonates via dual gold and photoredox catalysis is described. The reaction proceeds smoothly at room temperature in the absence of base and/or additives, and offers an efficient approach to arylphosphonates. The reaction is proposed to proceed through a photoredox-promoted generation of an electrophilic arylgold(III) intermediate that undergoes coupling with the H-phosphonate nucleophile

    Eigenvector continuation with subspace learning

    Full text link
    A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not possible. There are numerous efficient methods developed for this task, but they generally fail when some control parameter in the Hamiltonian matrix exceeds some threshold value. In this work we present a new technique called eigenvector continuation that can extend the reach of these methods. The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We prove this statement using analytic function theory and propose an algorithm to solve for the extremal eigenvectors. We benchmark the method using several examples from quantum many-body theory.Comment: Version to appear in Physical Review Letters, 4 + 6 pages (main + supplemental materials), 1 + 6 figures (main + supplemental materials

    Time fractals and discrete scale invariance with trapped ions

    Full text link
    We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal that is invariant under the rescaling of time. These features are reminiscent of the Efimov effect, which has been predicted and observed in bound states of three-body systems. We demonstrate that discrete scale invariance in the trapped ion system can be controlled with two independently tunable parameters. We also discuss the extension to n-body states where the discrete scaling symmetry has an exotic heterogeneous structure. The results we present can be realized using currently available technologies developed for trapped ion quantum systems.Comment: 4 + 5 pages (main + supplemental materials), 2 + 3 figures (main + supplemental materials), version to appear in Physical Review A Rapid Communication

    PexRAP inhibits PRDM16-mediated thermogenic gene expression

    Get PDF
    How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning, increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-β1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARγ, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling

    Effective Field Theory for Bound State Reflection

    Full text link
    Elastic quantum bound-state reflection from a hard-wall boundary provides direct information regarding the structure and compressibility of quantum bound states. We discuss elastic quantum bound-state reflection and derive a general theory for elastic reflection of shallow dimers from hard-wall surfaces using effective field theory. We show that there is a small expansion parameter for analytic calculations of the reflection scattering length. We present a calculation up to second order in the effective Hamiltonian in one, two, and three dimensions. We also provide numerical lattice results for all three cases as a comparison with our effective field theory results. Finally, we provide an analysis of the compressibility of the alpha particle confined to a cubic lattice with vanishing Dirichlet boundaries.Comment: 43 pages, 9 figures, 16 tables, published versio

    Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts α -linolenate, tryptophan, tyrosine and other major metabolic pathways

    Get PDF
    Overexposure to the commonly used herbicide atrazine (ATR) affects several organ systems, including the brain. Previously, we demonstrated that short-term oral ATR exposure causes behavioral deficits and dopaminergic and serotonergic dysfunction in the brains of mice. Using adult male C57BL/6 mice, the present study aimed to investigate effects of a 10-day oral ATR exposure (0, 5, 25, 125, or 250 mg/kg) on the mouse plasma metabolome and to determine metabolic pathways affected by ATR that may be reflective of ATR’s effects on the brain and useful to identify peripheral biomarkers of neurotoxicity. Four h after the last dosing on day 10, plasma was collected and analyzed with high-performance, dual chromatography-Fourier-transform mass spectrometry that was followed by biostatistical and bioinformatic analyses. ATR exposure (≥5 mg/kg) significantly altered plasma metabolite profile and resulted in a dose-dependent increase in the number of metabolites with ion intensities significantly different from the control group. Pathway analyses revealed that ATR exposure strongly correlated with and disrupted multiple metabolic pathways. Tyrosine, tryptophan, linoleic acid and α-linolenic acid metabolic pathways were among the affected pathways, with α-linolenic acid metabolism being affected to the greatest extent. Observed effects of ATR on plasma tyrosine and tryptophan metabolism may be reflective of the previously reported perturbations of brain dopamine and serotonin homeostasis, respectively. ATR-caused alterations in the plasma profile of α-linolenic acid metabolism are a potential novel and sensitive plasma biomarker of ATR effect and plasma metabolomics could be used to better assess the risks, including to the brain, associated with ATR overexposure

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state
    corecore