2,548 research outputs found
Measures of maturation in early fossil hominins: Events at the first transition from australopiths to early Homo
An important question in palaeoanthropology is whether, among the australopiths and the first fossil hominins attributed to early Homo, there was a shift towards a more prolonged period of growth that can be distinguished from that of the living great apes and whether between the end of weaning and the beginning of puberty there was a slow period of growth as there is in modern humans. Evidence for the pace of growth in early fossil hominins comes from preserved tooth microstructure. A record of incremental growth in enamel and dentine persists that allows us to reconstruct tooth growth and compare key measures of dental maturation with modern humans and living great apes. Despite their diverse diets and way of life it is currently difficult to identify any clear differences in the timing of dental development among living great apes, australopiths and the earliest hominins attributed to the genus Homo. There is, however, limited evidence that some early hominins may have attained a greater proportion of their body mass and stature relatively earlier in the growth period than is typical of modern humans today
Terahertz emission mechanism and laser excitation position dependence of nano-grating electrode photomixers
The emission mechanism of continuous wave (CW) terahertz (THz) photomixers that make use of nanostructured gratings (NSGs) is studied. Two different photomixer designs, based on a single-sided NSG and a double-sided NSG, embedded in the same antenna design and fabricated on an Fe doped InGaAsP substrate, are characterized with ∼1550 nm excitation. They are shown to exhibit similar performance in terms of spectral bandwidth and emitted power. The emission is mapped in terms of the laser excitation position, from which the emission mechanism is assigned to an enhanced optical electric field at the tips of the NSGs
Volunteering in the care of people with severe mental illness: a systematic review
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Extending Science Gateway Frameworks to Support Big Data Applications in the Cloud
Cloud computing offers massive scalability and elasticity required by many scientific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data
The role of mentorship in protege performance
The role of mentorship on protege performance is a matter of importance to
academic, business, and governmental organizations. While the benefits of
mentorship for proteges, mentors and their organizations are apparent, the
extent to which proteges mimic their mentors' career choices and acquire their
mentorship skills is unclear. Here, we investigate one aspect of mentor
emulation by studying mentorship fecundity---the number of proteges a mentor
trains---with data from the Mathematics Genealogy Project, which tracks the
mentorship record of thousands of mathematicians over several centuries. We
demonstrate that fecundity among academic mathematicians is correlated with
other measures of academic success. We also find that the average fecundity of
mentors remains stable over 60 years of recorded mentorship. We further uncover
three significant correlations in mentorship fecundity. First, mentors with
small mentorship fecundity train proteges that go on to have a 37% larger than
expected mentorship fecundity. Second, in the first third of their career,
mentors with large fecundity train proteges that go on to have a 29% larger
than expected fecundity. Finally, in the last third of their career, mentors
with large fecundity train proteges that go on to have a 31% smaller than
expected fecundity.Comment: 23 pages double-spaced, 4 figure
Deciphering interplay between Salmonella invasion effectors
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction
Slow nonequilibrium dynamics: parallels between classical and quantum glasses and gently driven systems
We review an scenario for the non-equilibrium dynamics of glassy systems that
has been motivated by the exact solution of simple models. This approach allows
one to set on firmer grounds well-known phenomenological theories. The old
ideas of entropy crisis, fictive temperatures, free-volume... have clear
definitions within these models. Aging effects in the glass phase are also
captured. One of the salient features of the analytic solution, the breakdown
of the fluctuation-dissipation relations, provides a definition of a bonafide
{\it effective temperature} that is measurable by a thermometer, controls heat
flows, partial equilibrations, and the reaction to the external injection of
heat. The effective temperature is an extremely robust concept that appears in
non-equilibrium systems in the limit of small entropy production as, for
instance, sheared fluids, glasses at low temperatures when quantum fluctuations
are relevant, tapped or vibrated granular matter, etc. The emerging scenario is
one of partial equilibrations, in which glassy systems arrange their internal
degrees of freedom so that the slow ones select their own effective
temperatures. It has been proven to be consistent within any perturbative
resummation scheme (mode coupling, etc) and it can be challenged by
experimental and numerical tests, some of which it has already passed.Comment: 15 pages, 8 figure
Terahertz generation mechanism in nano-grating electrode photomixers on Fe-doped InGaAsP
We report the generation mechanism associated with nano-grating electrode photomixers fabricated on Fe-doped InGaAsP substrates. Two different emitter designs incorporating nano-gratings coupled to the same broadband antenna were characterized in a continuous-wave terahertz (THz) frequency system employing telecommunications wavelength lasers for generation and coherent detection. The current-voltage characteristics and THz emission bandwidth of the emitters is compared for different bias polarities and optical polarisations. The THz output from the emitters is also mapped as a function of the position of the laser excitation spot for both continuous-wave and pulsed excitation. This mapping, together with full-wave simulations of the structures, confirms the generation mechanism to be due to an enhanced optical electric field at the grating tips resulting in increased optical absorption, coinciding with a concentration of the electrostatic field
- …
