42 research outputs found

    The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis

    Get PDF
    The productive human papillomavirus (HPV) life cycle is tightly linked to the differentiation and cycling of keratinocytes. Deregulation of these processes and stimulation of cell proliferation by the action of viral oncoproteins and host cell factors underlies HPV-mediated carcinogenesis. Severe HPV infections characterize the wart, hypogammaglobulinemia, infection, and myelokathexis (WHIM) immunodeficiency syndrome, which is caused by gain-of-function mutations in the CXCR4 receptor for the CXCL12 chemokine, one of which is CXCR41013^{1013}. We investigated whether CXCR41013^{1013} interferes in the HPV18 life cycle in epithelial organotypic cultures. Expression of CXCR41013^{1013} promoted stabilization of HPV oncoproteins, thus disturbing cell cycle progression and proliferation at the expense of the ordered expression of the viral genes required for virus production. Conversely, blocking CXCR41013^{1013} function restored virus production and limited HPV-induced carcinogenesis. Thus, CXCR4 and its potential activation by genetic alterations in the course of the carcinogenic process can be considered as an important host factor for HPV carcinogenesis.This work was supported by the Institut National de la Santé et de la Recherche Médicale (FM, LC, CD, AJR, FG, PC, FB), ERA-Net for Research Programmes on Rare Diseases (WHIMThernet 2011-E-RARE 013-01) (FM, FB) and Institut National du Cancer (Chemokine-HPV TRANSLA11-077) (FM, CD, FB). We acknowledge funding from the French Laboratory of Excellence project LERMIT (Investissements d’Avenir-ANR-10-LABX-0033-LERMIT) (FM, AJR, PC, FB) and fellowship (FM) from the Fondation ARC pour la recherche sur le cancer

    Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus

    Get PDF
    Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients

    Surveillance of active human cytomegalovirus infection in hematopoietic stem cell transplantation (HLA sibling identical donor): search for optimal cutoff value by real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cytomegalovirus (CMV) infection still causes significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, it is extremely important to diagnosis and monitor active CMV infection in HSCT patients, defining the CMV DNA levels of virus replication that warrant intervention with antiviral agents in order to accurately prevent CMV disease and further related complications.</p> <p>Methods</p> <p>During the first 150 days after allogeneic HSTC, thirty patients were monitored weekly for active CMV infection by <it>pp65 </it>antigenemia, nested-PCR and real-time PCR assays. Receiver operating characteristic (ROC) plot analysis was performed to determine a threshold value of the CMV DNA load by real-time PCR.</p> <p>Results</p> <p>Using ROC curves, the optimal cutoff value by real-time PCR was 418.4 copies/10<sup>4 </sup>PBL (sensitivity, 71.4%; specificity, 89.7%). Twenty seven (90%) of the 30 analyzed patients had active CMV infection and two (6.7%) developed CMV disease. Eleven (40.7%) of these 27 patients had acute GVHD, 18 (66.7%) had opportunistic infection, 5 (18.5%) had chronic rejection and 11 (40.7%) died - one died of CMV disease associated with GVHD and bacterial infection.</p> <p>Conclusions</p> <p>The low incidence of CMV disease in HSCT recipients in our study attests to the efficacy of CMV surveillance based on clinical routine assay. The quantification of CMV DNA load using real-time PCR appears to be applicable to the clinical practice and an optimal cutoff value for guiding timely preemptive therapy should be clinically validated in future studies.</p

    Rotavirus Rearranged Genomic RNA Segments Are Preferentially Packaged into Viruses Despite Not Conferring Selective Growth Advantage to Viruses

    Get PDF
    The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 107 wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny

    Herpès

    Full text link

    Antivirales (excluidos los antirretrovirales)

    Full text link
    corecore