2,064 research outputs found
Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study.
ObjectiveDiabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer's disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults.Research design and methodsFramingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001) constituted our study sample (n = 2,439; 1,311 women; age 61 ± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-ε4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C).ResultsWe observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007).ConclusionsMetabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort
Recommended from our members
Association of Metabolic Dysregulation With Volumetric Brain Magnetic Resonance Imaging and Cognitive Markers of Subclinical Brain Aging in Middle-Aged Adults
Objective: Diabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer’s disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults. Research Design and Methods: Framingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998–2001) constituted our study sample (n = 2,439; 1,311 women; age 61 ± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-ε4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C). Results: We observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007). Conclusions: Metabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort
Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study
Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD
Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium
Background<p></p>
Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p>
Methods and Results<p></p>
We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p>
Conclusion<p></p>
Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings
HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.
Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10-8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification
Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium
Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions
The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis
Objectives To review the evidence for an association of white matter hyperintensities with risk of stroke, cognitive decline, dementia, and death
How Much Do Focal Infarcts Distort White Matter Lesions and Global Cerebral Atrophy Measures?
BACKGROUND: White matter lesions (WML) and brain atrophy are important biomarkers in stroke and dementia. Stroke lesions, either acute or old, symptomatic or silent, are common in older people. Such stroke lesions can have similar signals to WML and cerebrospinal fluid (CSF) on magnetic resonance (MR) images, and may be classified accidentally as WML or CSF by MR image processing algorithms, distorting WML and brain atrophy volume from the true volume. We evaluated the effect that acute or old stroke lesions at baseline, and new stroke lesions occurring during follow-up, could have on measurement of WML volume, cerebral atrophy and their longitudinal progression. METHODS: We used MR imaging data from patients who had originally presented with acute lacunar or minor cortical ischaemic stroke symptoms, recruited prospectively, who were scanned at baseline and about 3 years later. We measured WML and CSF volumes (ml) semi-automatically. We manually outlined the acute index stroke lesion (ISL), any old stroke lesions present at baseline, and new lesions appearing de novo during follow-up. We compared baseline and follow-up WML volume, cerebral atrophy and their longitudinal progression excluding and including the acute ISL, old and de novo stroke lesions. A non-parametric test (Wilcoxon's signed rank test) was used to compare the effects. RESULTS: Among 46 patients (mean age 72 years), 33 had an ISL visible on MR imaging (median volume 2.05 ml, IQR 0.88–8.88) and 7 of the 33 had old lacunes at baseline: WML volume was 8.54 ml (IQR 5.86–15.80) excluding versus 10.98 ml (IQR 6.91–24.86) including ISL (p < 0.001). At follow-up, median 39 months later (IQR 30–45), 3 patients had a de novo stroke lesion; total stroke lesion volume had decreased in 11 and increased in 22 patients: WML volume was 12.17 ml (IQR 8.54–19.86) excluding versus 14.79 ml (IQR 10.02–38.03) including total stroke lesions (p < 0.001). Including/excluding lacunes at baseline or follow-up also made small differences. Twenty-two of the 33 patients had tissue loss due to stroke lesions between baseline and follow-up, resulting in a net median brain tissue volume loss (i.e. atrophy) during follow-up of 24.49 ml (IQR 12.87–54.01) excluding versus 24.61 ml (IQR 15.54–54.04) including tissue loss due to stroke lesions (p < 0.001). Including stroke lesions in the WML volume added substantial noise, reduced statistical power, and thus increased sample size estimated for a clinical trial. CONCLUSIONS: Failure to exclude even small stroke lesions distorts WML volume, cerebral atrophy and their longitudinal progression measurements. This has important implications for design and sample size calculations for observational studies and randomised trials using WML volume, WML progression or brain atrophy as outcome measures. Improved methods of discriminating between stroke lesions and WML, and between tissue loss due to stroke lesions and true brain atrophy are required
Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain
White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2′-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined
- …
