96 research outputs found

    Interface instability in shear banding flow

    Get PDF
    We report on the spatio-temporal dynamics of the interface in shear-banding flow of a wormlike micellar system (cetyltrimethylammonium bromide and sodium nitrate in water) during a start-up experiment. Using the scattering properties of the induced structures, we demonstrate the existence of an instability of the interface between bands along the vorticity direction. Different regimes of spatio-temporal dynamics of the interface are indentified along the stress plateau. We build a model based on the flow symetry which qualitatively describes the observed patterns

    An elasto-visco-plastic model for immortal foams or emulsions

    Get PDF
    A variety of complex fluids consist in soft, round objects (foams, emulsions, assemblies of copolymer micelles or of multilamellar vesicles -- also known as onions). Their dense packing induces a slight deviation from their prefered circular or spherical shape. As a frustrated assembly of interacting bodies, such a material evolves from one conformation to another through a succession of discrete, topological events driven by finite external forces. As a result, the material exhibits a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion, object coalescence, molecular diffusion), and the material properties under low or vanishing stress may alter with time, a phenomenon known as aging. We neglect such effects to address the simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the ability of such soft materials to deform substantially in the elastic regime (be it compressible or not) before they undergo (incompressible) plastic creep -- or viscous flow under even higher stresses.Comment: 69 pages, 29 figure

    Time scales in shear banding of wormlike micelles

    Get PDF
    Transient stress and birefringence measurements are performed on wormlike micellar solutions that "shear band", i.e. undergo flow-induced coexistence of states of different viscosities along a constant stress "plateau". Three well-defined relaxation times are found after a strain rate step between two banded flow states on the stress plateau. Using the Johnson-Segalman model, we relate these time scales to three qualitatively different stages in the evolution of the bands and the interface between them: band destabilization, reconstruction of the interface, and travel of the fully formed interface. The longest timescale is then used to estimate the magnitude of the (unknown) "gradient" terms that must be added to constitutive relations to explain the history independence of the steady flow and the plateau stress selection

    Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry

    Full text link
    We report a large amount of experimental data on the stress overshoot phenomenon which takes place during start-up shear flows in a simple yield stress fluid, namely a carbopol microgel. A combination of classical rheological measurements and ultrasonic velocimetry makes it possible to get physical insights on the transient dynamics of both the stress σ(t)\sigma(t) and the velocity field across the gap of a rough cylindrical Couette cell during the start-up of shear under an applied shear rate γ˙\dot\gamma. (i) At small strains (γ<1\gamma <1), σ(t)\sigma(t) increases linearly and the microgel undergoes homogeneous deformation. (ii) At a time tmt_m, the stress reaches a maximum value σm\sigma_m which corresponds to the failure of the microgel and to the nucleation of a thin lubrication layer at the moving wall. (iii) The microgel then experiences a strong elastic recoil and enters a regime of total wall slip while the stress slowly decreases. (iv) Total wall slip gives way to a transient shear-banding phenomenon, which occurs on timescales much longer than that of the stress overshoot and has been described elsewhere [Divoux \textit{et al., Phys. Rev. Lett.}, 2010, \textbf{104}, 208301]. This whole sequence is very robust to concentration changes in the explored range (0.5C30.5 \le C \le 3% w/w). We further demonstrate that the maximum stress σm\sigma_m and the corresponding strain γm=γ˙tm\gamma_m=\dot\gamma t_m both depend on the applied shear rate γ˙\dot \gamma and on the waiting time twt_w between preshear and shear start-up: they remain roughly constant as long as γ˙\dot\gamma is smaller than some critical shear rate γ˙w1/tw\dot\gamma_w\sim 1/t_w and they increase as weak power laws of γ˙\dot \gamma for γ˙>γ˙w\dot\gamma> \dot\gamma_w [...].Comment: 18 pages, 14 figures, accepted for publication in Soft Matte

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Taylor-like vortices in the shear-banding flow of giant micelles

    Full text link
    Using flow visualizations in Couette geometry, we demonstrate the existence of Taylor-like vortices in the shear-banding flow of a giant micelles system. We show that vortices stacked along the vorticity direction develop concomitantly with interfacial undulations. These cellular structures are mainly localized in the induced band and their dynamics is fully correlated with that of the interface. As the control parameter increases, we observe a transition from a steady vortex flow to a state where pairs of vortices are continuously created and destroyed. Normal stress effects are discussed as potential mechanisms driving the three-dimensional flow.Comment: 5 pages, 4 figure

    Phenomenology and physical origin of shear-localization and shear-banding in complex fluids

    Get PDF
    We review and compare the phenomenological aspects and physical origin of shear-localization and shear-banding in various material types, namely emulsions, suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view shear-banding in these systems has a common physical origin: two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition and, depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.Comment: The original publication is available at http://www.springerlink.co

    Recent experimental probes of shear banding

    Get PDF
    Recent experimental techniques used to investigate shear banding are reviewed. After recalling the rheological signature of shear-banded flows, we summarize the various tools for measuring locally the microstructure and the velocity field under shear. Local velocity measurements using dynamic light scattering and ultrasound are emphasized. A few results are extracted from current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference

    Geometric scaling of elastic instabilities in the Taylor–Couette geometry:A theoretical, experimental and numerical study

    Get PDF
    We investigate the curvature-dependence of the visco-elastic Taylor-Couette instability. The radius of curvature is changed over almost a decade and the critical Weissenberg numbers of the first linear instability are determined. Experiments are performed with a variety of polymer solutions and the scaling of the critical Weissenberg number with the curvature against the prediction of the Pakdel-McKinley criterion is assessed. We revisit the linear stability analysis based on the Oldroyd-B model and find, surprisingly, that the experimentally observed scaling is not as clearly recovered. We extend the constitutive equation to a two-mode model by incorporating the PTT model into our analysis to reproduce the rheological behaviour of our fluid, but still find no agreement between the linear stability analysis and experiments. We also demonstrate that that conclusion is not altered by the presence of inertia or viscous heating. The Pakdel-McKinley criterion, on the other hand, shows a very good agreement with the data.Comment: 17 pages, 18 figures, submitted to J. Non-Newtonian Fluid Mec
    corecore