1,596 research outputs found
High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures
We report experimental measurements for ultrathin (< 15 nm) van der Waals
heterostructures exhibiting external quantum efficiencies exceeding 50%, and
show that these structures can achieve experimental absorbance > 90%. By
coupling electromagnetic simulations and experimental measurements, we show
that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have
internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting
information (7 pages, 4 figures
Electrical Control of Linear Dichroism in Black Phosphorus from the Visible to Mid-Infrared
The incorporation of electrically tunable materials into photonic structures
such as waveguides and metasurfaces enables dynamic control of light
propagation by an applied potential. While many materials have been shown to
exhibit electrically tunable permittivity and dispersion, including transparent
conducting oxides (TCOs) and III-V semiconductors and quantum wells, these
materials are all optically isotropic in the propagation plane. In this work,
we report the first known example of electrically tunable linear dichroism,
observed here in few-layer black phosphorus (BP), which is a promising
candidate for multi-functional, broadband, tunable photonic elements. We
measure active modulation of the linear dichroism from the mid-infrared to
visible frequency range, which is driven by anisotropic quantum-confined Stark
and Burstein-Moss effects, and field-induced forbidden-to-allowed optical
transitions. Moreover, we observe high BP absorption modulation strengths,
approaching unity for certain thicknesses and photon energies
Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study
With a view towards optimizing gas storage and separation in crystalline and
disordered nanoporous carbon-based materials, we use ab initio density
functional theory calculations to explore the effect of chemical
functionalization on gas binding to exposed edges within model carbon
nanostructures. We test the geometry, energetics, and charge distribution of
in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene
nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3.
Although different choices for the exchange-correlation functional lead to a
spread of values for the binding energy, trends across the functional groups
are largely preserved for each choice, as are the final orientations of the
adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly
a factor of two. However, the two gases follow very similar trends with changes
in the attached functional group, despite different molecular symmetries. Our
results indicate that the presence of NH2, H2PO3, NO2, and COOH functional
groups can significantly enhance gas binding with respect to a
hydrogen-passivated edge, making the edges potentially viable binding sites in
materials with high concentrations of edge carbons. To first order, in-plane
binding strength correlates with the larger permanent and induced dipole
moments on these groups. Implications for tailoring carbon structures for
increased gas uptake and improved CO2/CH4 selectivity are discussed.Comment: 12 pages, 7 figure
Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic
The coming few years are likely to witness a dramatic increase in high
quality Sn data as current surveys add more high redshift supernovae to their
inventory and as newer and deeper supernova experiments become operational.
Given the current variety in dark energy models and the expected improvement in
observational data, an accurate and versatile diagnostic of dark energy is the
need of the hour. This paper examines the Statefinder diagnostic in the light
of the proposed SNAP satellite which is expected to observe about 2000
supernovae per year. We show that the Statefinder is versatile enough to
differentiate between dark energy models as varied as the cosmological constant
on the one hand, and quintessence, the Chaplygin gas and braneworld models, on
the other. Using SNAP data, the Statefinder can distinguish a cosmological
constant () from quintessence models with and Chaplygin gas
models with at the level if the value of \om is
known exactly. The Statefinder gives reasonable results even when the value of
\om is known to only accuracy. In this case, marginalizing over
\om and assuming a fiducial LCDM model allows us to rule out quintessence
with and the Chaplygin gas with (both at
). These constraints can be made even tighter if we use the
Statefinders in conjunction with the deceleration parameter. The Statefinder is
very sensitive to the total pressure exerted by all forms of matter and
radiation in the universe. It can therefore differentiate between dark energy
models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version
published in MNRAS. Results unchange
- …
