503 research outputs found

    Wave Propagation in 1-D Spiral geometry

    Full text link
    In this article, we investigate the wave equation in spiral geometry and study the modes of vibrations of a one-dimensional (1-D) string in spiral shape. Here we show that the problem of wave propagation along a spiral can be reduced to Bessel differential equation and hence, very closely related to the problem of radial waves of two-dimensional (2-D) vibrating membrane in circular geometry

    Harbingers of Exotic Transients: The Electromagnetic Follow-up of Gravitational-wave Transients & Transient Rates

    Get PDF
    Gravitational waves (GWs) provide a unique view of the universe. They directly probe the extreme gravity and extreme matter of compact objects like black holes (BHs) and neutron stars (NSs) which is not always possible from traditional electromagnetic (EM) wave astronomy. The cataclysmic coalescence of compact object binaries is one of the loudest individual sources of GWs that can be detected by the Laser Interferometer Gravitational wave Observatory (LIGO) and the Virgo Observatory. If one of the component is a NS, there is a possibility that the merger is bright in the EM spectrum. The relativistic astrophysics could launch a short gamma-ray burst, the radioactivity in the neutron rich ejecta could power a rapidly decaying optical transient called a kilonova. Hence, it is possible to jointly observe the same source via multiple messengers. It is this prospect of multi-messenger astronomy using GWs that is of great interest due to the rich science that can be extracted from such joint observations. In this thesis, I present the details of my work with the LIGO Scientific Collaboration and Virgo Collaboration in the context of multi-messenger astronomy. I also report my work on the time-domain astronomy front in the development of an observing strategy for the Zwicky Transient Facility (ZTF), and characterizing the detection efficiency of the intermediate Palomar Transient Factory (iPTF)

    The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs

    Get PDF
    After their successful first observing run (September 12, 2015 - January 12, 2016), the Advanced LIGO detectors were upgraded to increase their sensitivity for the second observing run (November 30, 2016 - August 26, 2017). The Advanced Virgo detector joined the second observing run on August 1, 2017. We discuss the updates that happened during this period in the GstLAL-based inspiral pipeline, which is used to detect gravitational waves from the coalescence of compact binaries both in low latency and an offline configuration. These updates include deployment of a zero-latency whitening filter to reduce the over-all latency of the pipeline by up to 32 seconds, incorporation of the Virgo data stream in the analysis, introduction of a single-detector search to analyze data from the periods when only one of the detectors is running, addition of new parameters to the likelihood ratio ranking statistic, increase in the parameter space of the search, and introduction of a template mass-dependent glitch-excision thresholding method.Comment: 12 pages, 7 figures, to be submitted to Phys. Rev. D, comments welcom

    Neural Post-Einsteinian Framework for Efficient Theory-Agnostic Tests of General Relativity with Gravitational Waves

    Full text link
    The parametrized post-Einsteinian (ppE) framework and its variants are widely used to probe gravity through gravitational-wave tests that apply to a large class of theories beyond general relativity. However, the ppE framework is not truly theory-agnostic as it only captures certain types of deviations from general relativity: those that admit a post-Newtonian series representation in the inspiral of coalescencing compact objects. Moreover, each type of deviation in the ppE framework has to be tested separately, making the whole process computationally inefficient and expensive, possibly obscuring the theoretical interpretation of potential deviations that could be detected in the future. We here present the neural post-Einsteinian (npE) framework, an extension of the ppE formalism that overcomes the above weaknesses using deep-learning neural networks. The core of the npE framework is a variantional autoencoder that maps the discrete ppE theories into a continuous latent space in a well-organized manner. This design enables the npE framework to test many theories simultaneously and to select the theory that best describes the observation in a single parameter estimation run. The smooth extension of the ppE parametrization also allows for more general types of deviations to be searched for with the npE model. We showcase the application of the new npE framework to future tests of general relativity with the fifth observing run of the LIGO-Virgo-KAGRA collaboration. In particular, the npE framework is demonstrated to efficiently explore modifications to general relativity beyond what can be mapped by the ppE framework, including modifications coming from higher-order curvature corrections to the Einstein-Hilbert action at high post-Newtonian order, and dark-photon interactions in possibly hidden sectors of matter that do not admit a post-Newtonian representation.Comment: 30 pages, 15 figures, submitted to PR

    A Bibliography on Marichjhapi Massacre in West Bengal

    Get PDF
    The Marchjhapi incidents have significant influence in the socio-political environment of West Bengal. The paper deals with the bibliographic approach of the Marichjhapi Massacre in West Bengal. The paper attempt has been made to compile a bibliography on Marichjhapi massacre and Google Scholar was used as the basic tool to retrieve the data significant. Findings of the study indicated that the literature got significant increase from 2001 onwards. The paper is expected to be helpful for the researchers to get access to the relevant documents of the field

    The GstLAL template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and Virgo

    Get PDF
    We describe the methods used to construct the aligned-spin template bank of gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze data from the second observing run of Advanced LIGO and Virgo. The bank expands upon the parameter space covered during the first observing run, including coverage for merging compact binary systems with total mass between 2 M\mathrm{M}_{\odot} and 400 M\mathrm{M}_{\odot} and mass ratios between 1 and 97.989. Thus the systems targeted include merging neutron star-neutron star systems, neutron star-black hole binaries, and black hole-black hole binaries expanding into the intermediate-mass range. Component masses less than 2 M\mathrm{M}_{\odot} have allowed (anti-)aligned spins between ±0.05\pm0.05 while component masses greater than 2 M\mathrm{M}_{\odot} have allowed (anti-)aligned between ±0.999\pm0.999. The bank placement technique combines a stochastic method with a new grid-bank method to better isolate noisy templates, resulting in a total of 677,000 templates.Comment: 9 pages, 13 figure
    corecore