1,231 research outputs found

    Cosmology with decaying tachyon matter

    Full text link
    We investigate the case of a homogeneous tachyon field coupled to gravity in a spatially flat Friedman-Robertson-Walker spacetime. Assuming the field evolution to be exponentially decaying with time we solve the field equations and show that, under certain conditions, the scale factor represents an accelerating universe, following a phase of decelerated expansion. We make use of a model of dark energy (with p=-\rho) and dark matter (p=0) where a single scalar field (tachyon) governs the dynamics of both the dark components. We show that this model fits the current supernova data as well as the canonical \LambdaCDM model. We give the bounds on the parameters allowed by the current data.Comment: 14 pages, 6 figures, v2, Discussions and references addede

    Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study

    Full text link
    With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding with respect to a hydrogen-passivated edge, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed.Comment: 12 pages, 7 figure

    Twenty Years of Drilling the Deepest Hole in Ice

    Get PDF
    No abstract available. doi:10.2204/iodp.sd.11.05.2011</a

    Anomalous insulator metal transition in boron nitride-graphene hybrid atomic layers

    Get PDF
    The study of two-dimensional (2D) electronic systems is of great fundamental significance in physics. Atomic layers containing hybridized domains of graphene and hexagonal boron nitride (h-BNC) constitute a new kind of disordered 2D electronic system. Magneto-electric transport measurements performed at low temperature in vapor phase synthesized h-BNC atomic layers show a clear and anomalous transition from an insulating to a metallic behavior upon cooling. The observed insulator to metal transition can be modulated by electron and hole doping and by the application of an external magnetic field. These results supported by ab-initio calculations suggest that this transition in h-BNC has distinctly different characteristics when compared to other 2D electron systems and is the result of the coexistence between two distinct mechanisms, namely, percolation through metallic graphene networks and hopping conduction between edge states on randomly distributed insulating h-BN domains.Comment: 9 pages, 15 figure

    Ultra Long Period Cepheids: a primary standard candle out to the Hubble flow

    Full text link
    The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).Comment: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Scienc

    Reconstructing the Cosmic Equation of State from Supernova distances

    Get PDF
    Observations of high-redshift supernovae indicate that the universe is accelerating. Here we present a {\em model-independent} method for estimating the form of the potential V(ϕ)V(\phi) of the scalar field driving this acceleration, and the associated equation of state wϕw_\phi. Our method is based on a versatile analytical form for the luminosity distance DLD_L, optimized to fit observed distances to distant supernovae and differentiated to yield V(ϕ)V(\phi) and wϕw_\phi. Our results favor wϕ1w_\phi\simeq -1 at the present epoch, steadily increasing with redshift. A cosmological constant is consistent with our results.Comment: 4 pages, 5 figures, uses RevTex. Minor typo's in equations (1) and (10) correcte

    An E-ELT Case Study: Colour-Magnitude Diagrams of an Old Galaxy in the Virgo Cluster

    Get PDF
    One of the key science goals for a diffraction limited imager on an Extremely Large Telescope (ELT) is the resolution of individual stars down to faint limits in distant galaxies. The aim of this study is to test the proposed capabilities of a multi-conjugate adaptive optics (MCAO) assisted imager working at the diffraction limit, in IJHKs_s filters, on a 42m diameter ELT to carry out accurate stellar photometry in crowded images in an Elliptical-like galaxy at the distance of the Virgo cluster. As the basis for realistic simulations we have used the phase A studies of the European-ELT project, including the MICADO imager (Davies & Genzel 2010) and the MAORY MCAO module (Diolaiti 2010). We convolved a complex resolved stellar population with the telescope and instrument performance expectations to create realistic images. We then tested the ability of the currently available photometric packages STARFINDER and DAOPHOT to handle the simulated images. Our results show that deep Colour-Magnitude Diagrams (photometric error, ±\pm0.25 at I\ge27.2; H\ge25. and Ks_s\ge24.6) of old stellar populations in galaxies, at the distance of Virgo, are feasible at a maximum surface brightness, μV\mu_V \sim 17 mag/arcsec2^2 (down to MI>4_I > -4 and MH_H \sim MK>6_K > -6), and significantly deeper (photometric error, ±\pm0.25 at I\ge29.3; H\ge26.6 and Ks_s\ge26.2) for μV\mu_V \sim 21 mag/arcsec2^2 (down to MI2_I \ge -2 and MH_H \sim MK4.5_K \ge -4.5). The photometric errors, and thus also the depth of the photometry should be improved with photometry packages specifically designed to adapt to an ELT MCAO Point Spread Function. We also make a simple comparison between these simulations and what can be expected from a Single Conjugate Adaptive Optics feed to MICADO and also the James Webb Space Telescope.Comment: 17 pages, 22 figures, accepted on A&

    The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs

    Get PDF
    After their successful first observing run (September 12, 2015 - January 12, 2016), the Advanced LIGO detectors were upgraded to increase their sensitivity for the second observing run (November 30, 2016 - August 26, 2017). The Advanced Virgo detector joined the second observing run on August 1, 2017. We discuss the updates that happened during this period in the GstLAL-based inspiral pipeline, which is used to detect gravitational waves from the coalescence of compact binaries both in low latency and an offline configuration. These updates include deployment of a zero-latency whitening filter to reduce the over-all latency of the pipeline by up to 32 seconds, incorporation of the Virgo data stream in the analysis, introduction of a single-detector search to analyze data from the periods when only one of the detectors is running, addition of new parameters to the likelihood ratio ranking statistic, increase in the parameter space of the search, and introduction of a template mass-dependent glitch-excision thresholding method.Comment: 12 pages, 7 figures, to be submitted to Phys. Rev. D, comments welcom

    Growth of carbon nanotubes on quasicrystalline alloys

    Full text link
    We report on the synthesis of carbon nanotubes on quasicrystalline alloys. Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of decagonal quasicrystals were synthesized using floating catalyst chemical vapor deposition. The alignment of the nanotubes was found perpendicular to the decagonal faces of the quasicrystals. A comparison between the growth and tube quality has also been made between tubes grown on various quasicrystalline and SiO2 substrates. While a significant MWNT growth was observed on decagonal quasicrystalline substrate, there was no significant growth observed on icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) results show high crystalline nature of the nanotubes. Presence of continuous iron filled core in the nanotubes grown on these substrates was also observed, which is typically not seen in MWNTs grown using similar process on silicon and/or silicon dioxide substrates. The study has important implications for understanding the growth mechanism of MWNTs on conducting substrates which have potential applications as heat sinks
    corecore