578 research outputs found
Immunoglobin and Fcγ Receptor Genes Influence the Control of HIV Replication and the Progression of HIV Infection
HIV is an infection affecting approximately 33 million people worldwide especially in Sub-Saharan Africa and Southeastern Asia. HIV infection is marked by the loss of CD4+ T-cells and is the causative agent of AIDS. Host genetic factors have been shown to influence the progression and outcome of HIV infection, but the genes identified thus far account for approximately 15% of the variance observed in viral load and progression, suggesting involvement of additional genes in HIV pathogenesis. FcyRIIa and FcyRIIIa genotypes have been shown to be influential in the transmission, control, and progression of HIV. These receptors contain polymorphisms that influence binding affinity for their ligand, the Fe region of IgG. The Fc region is also highly polymorphic and could potentially contribute to the differences seen in control and progression. Yet, these polymorphisms, known as GM allotypes, have not been investigated. Determinants expressed on Fc (GM) and FcyR are probably some of the most likely ligand-receptor candidate pairs for gene-gene interactions in the human genome. Thus, the aim of this investigation was to determine whether particular GM and FcyRila, genotypes were individually or epistatically associated with the host control of HIV replication and progression of HIV to a low CD4+ T-cell count. This study suggests that while no GM allotype is influential by itself, particular combinations of FcyR-GM are influential in the control of HIV replication as well as the progression of HIV to a low CD4+ T-cell count
Interdiffusion: A probe of vacancy diffusion in III-V materials
Copyright 1997 by the American Physical Society. Article is available at
7 Steps to find Oahu circuit court records : a citizen's primer : using the general index to unlock stores of facts
Eosinophils Are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus Infection
In patients infected with the fungus Aspergillus fumigatus, Th1 responses are considered protective, while Th2 responses are associated with increased morbidity and mortality. How host-pathogen interactions influence the development of these protective or detrimental immune responses is not clear. We compared lung immune responses to conidia from two fungal isolates that expressed different levels of the fungal cell wall component chitin. We observed that repeated aspirations of the high-chitin-expressing isolate Af5517 induced increased airway eosinophilia in the lungs of recipient mice compared to the level of eosinophilia induced by isolate Af293. CD4+ T cells in the bronchoalveolar lavage fluid (BALF) of Af5517-aspirated mice displayed decreased gamma interferon secretion and increased interleukin-4 transcription. In addition, repeated aspirations of Af5517 induced lung transcription of the Th2-associated chemokines CCL11 (eotaxin-1) and CCL22 (macrophage-derived chemokine). Eosinophil recruitment in response to conidial aspiration was correlated with the level of chitin exposure during germination and was decreased by constitutive lung chitinase expression. Moreover, eosinophil-deficient mice subjected to multiple aspirations of Af5517 prior to neutrophil depletion and infection exhibited decreased morbidity and fungal burden compared to the levels of morbidity and fungal burden found in wild-type mice. These results suggest that exposure of chitin in germinating conidia promotes eosinophil recruitment and ultimately induces Th2-skewed immune responses after repeated aspiration. Furthermore, our results suggest that eosinophils should be examined as a potential therapeutic target in patients that mount poorly protective Th2 responses to A. fumigatus infection
TLR3 essentially promotes protective class I–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients
Aspergillus fumigatus is a model fungal pathogen and a common cause of severe infections and diseases. CD8+ T cells are present in the human and murine T-cell repertoire to the fungus. However, CD8+ T-cell function in infection and the molecular mechanisms that control their priming and differentiation into effector and memory cells in vivo remain elusive. In the present study, we report that both CD4+ and CD8+ T cells mediate protective memory responses to the fungus contingent on the nature of the fungal vaccine. Mechanistically, class I MHC-restricted, CD8+ memory T cells were activated through TLR3 sensing of fungal RNA by cross-presenting dendritic cells. Genetic deficiency of TLR3 was associated with susceptibility to aspergillosis and concomitant failure to activate memory-protective CD8+ T cells both in mice and in patients receiving stem-cell transplantations. Therefore, TLR3 essentially promotes antifungal memory CD8+ T-cell responses and its deficiency is a novel susceptibility factor for aspergillosis in high-risk patients.These studies were supported by the Specific Targeted Research Project ALLFUN (FP7-HEALTH-2009 contract number 260338 to L.R.), by SYBARIS (FP7-HEALTH-2009 contract number 242220 to L.R.), and by the Italian Project AIDS 2010 by the Istituto Superiore di Sanita (contract number 40H40 to L.R.). A.C. and C.C. were supported by fellowships from Fundacao para a Ciencia e Tecnologia, Portugal (contracts SFRH/BPD/46292/2008 and SFRH/BD/65962/2009, respectively)
Novel strategies to enhance vaccine immunity against coccidioidomycosis
Coccidioidomycosis is a potentially life-threatening respiratory mycosis endemic to the Americas and caused by inhalation of spores produced by the molds Coccidioides immitis and C. posadasii
Coccidioidomycosis Incidence in Arizona Predicted by Seasonal Precipitation
The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995–2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a “primary” exposure season that spans August-March and a “secondary” season that spans April–June which are then used in subsequent analyses. We show that October–December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = −0.79, p = 0.004) and Pima (R = −0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the “grow and blow” hypothesis
Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis
LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca2+ signalling pathway that depends on intracellular Ca2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca2+-CaM signalling in aspergillosis. Finally, we demonstrate that Ca2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca2+-CaM signalling to inhibit LAP. These findings reveal the important role of Ca2+-CaM signalling in antifungal immunity and identify an immunological function of Ca2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.Onassis Foundation under the ‘Special Grant and
Support Program for Scholars’ Association Members’ (Grant no. R ZM 003-1/2016-2017); G.C. was supported by grants from the Greek State Scholarship Foundation (I.K.Y.), the Hellenic General Secretariat for Research and Technology-Excellence program (ARISTEIA) and a Research Grant from Institut Mérieux; J.P.L. was supported
by European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 260338 ALLFUN and ANR-10-BLAN-1309 HYDROPHOBIN, and the Association Vaincre La Mucoviscidose (RF20140501052/1/1/141); H.F. and N.M.N. were supported by the project FROnTHERA (NORTE-01-0145-FEDER-000023),
supported by Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e Tecnologia (FCT) project SPARTAN (PTDC/CTM-BIO/4388/2014), funded through the PIDDAC Program. A.C. and C.C. were supported by NORTE 2020, under the Portugal 2020
Partnership Agreement, through the ERDF (NORTE-01-0145-FEDER-000013), and by FCT (IF/00735/2014 and SFRH/BPD/96176/2013). G.S.D. and J.L.F. were supported by NIH grant AI-106269. K.J.K-C is supported by the Division of Intramural Research (DIR), NIAID, NIHinfo:eu-repo/semantics/publishedVersio
Histoplasmosis infection in patients with rheumatoid arthritis, 1998-2009
<p>Abstract</p> <p>Background</p> <p>Patients with rheumatic diseases including rheumatoid arthritis (RA) are at increased risk for infections related to both the disease and its treatments. These include uncommonly reported infections due to histoplasmosis.</p> <p>Methods</p> <p>Medical record review of all patients with a diagnosis of RA who developed new histoplasmosis infection in an endemic region between Jan 1, 1998 and Jan 30, 2009 and who were seen at Mayo Clinic in Rochester, Minnesota was performed.</p> <p>Results</p> <p>Histoplasmosis was diagnosed in 26 patients. Most patients were on combination therapies; 15 were on anti-tumor necrosis factor (anti-TNF) agents, 15 on corticosteroids and 16 on methotrexate. Most received more than 6 months of itraconazole and/or amphotericin treatment. Two patients died of causes unrelated to histoplasmosis. Anti-TNF treatment was restarted in 4/15 patients, with recurrence of histoplasmosis in one.</p> <p>Conclusions</p> <p>In this largest single center series of patients with RA and histoplasmosis in the era of immunomodulatory therapy, we found that most patients had longstanding disease and were on multiple immunomodulatory agents. Most cases were pulmonary; typical signs and symptoms of disease were frequently lacking.</p
- …
