1,119 research outputs found
Some considerations in the selection of aircraft for earth resource observations
Comparison of logistics problems and cost aspects in selection of aircraft for earth resources survey
Inference and Evaluation of the Multinomial Mixture Model for Text Clustering
In this article, we investigate the use of a probabilistic model for
unsupervised clustering in text collections. Unsupervised clustering has become
a basic module for many intelligent text processing applications, such as
information retrieval, text classification or information extraction. The model
considered in this contribution consists of a mixture of multinomial
distributions over the word counts, each component corresponding to a different
theme. We present and contrast various estimation procedures, which apply both
in supervised and unsupervised contexts. In supervised learning, this work
suggests a criterion for evaluating the posterior odds of new documents which
is more statistically sound than the "naive Bayes" approach. In an unsupervised
context, we propose measures to set up a systematic evaluation framework and
start with examining the Expectation-Maximization (EM) algorithm as the basic
tool for inference. We discuss the importance of initialization and the
influence of other features such as the smoothing strategy or the size of the
vocabulary, thereby illustrating the difficulties incurred by the high
dimensionality of the parameter space. We also propose a heuristic algorithm
based on iterative EM with vocabulary reduction to solve this problem. Using
the fact that the latent variables can be analytically integrated out, we
finally show that Gibbs sampling algorithm is tractable and compares favorably
to the basic expectation maximization approach
Detecting Large Concept Extensions for Conceptual Analysis
When performing a conceptual analysis of a concept, philosophers are
interested in all forms of expression of a concept in a text---be it direct or
indirect, explicit or implicit. In this paper, we experiment with topic-based
methods of automating the detection of concept expressions in order to
facilitate philosophical conceptual analysis. We propose six methods based on
LDA, and evaluate them on a new corpus of court decision that we had annotated
by experts and non-experts. Our results indicate that these methods can yield
important improvements over the keyword heuristic, which is often used as a
concept detection heuristic in many contexts. While more work remains to be
done, this indicates that detecting concepts through topics can serve as a
general-purpose method for at least some forms of concept expression that are
not captured using naive keyword approaches
Spoken query processing for interactive information retrieval
It has long been recognised that interactivity improves the effectiveness of information retrieval systems. Speech is the most natural and interactive medium of communication and recent progress in speech recognition is making it possible to build systems that interact with the user via speech. However, given the typical length of queries submitted to information retrieval systems, it is easy to imagine that the effects of word recognition errors in spoken queries must be severely destructive on the system's effectiveness. The experimental work reported in this paper shows that the use of classical information retrieval techniques for spoken query processing is robust to considerably high levels of word recognition errors, in particular for long queries. Moreover, in the case of short queries, both standard relevance feedback and pseudo relevance feedback can be effectively employed to improve the effectiveness of spoken query processing
Community detection based on links and node features in social networks
© Springer International Publishing Switzerland 2015. Community detection is a significant but challenging task in the field of social network analysis. Many effective methods have been proposed to solve this problem. However, most of them are mainly based on the topological structure or node attributes. In this paper, based on SPAEM [1], we propose a joint probabilistic model to detect community which combines node attributes and topological structure. In our model, we create a novel feature-based weighted network, within which each edge weight is represented by the node feature similarity between two nodes at the end of the edge. Then we fuse the original network and the created network with a parameter and employ expectation-maximization algorithm (EM) to identify a community. Experiments on a diverse set of data, collected from Facebook and Twitter, demonstrate that our algorithm has achieved promising results compared with other algorithms
Word Embeddings for Entity-annotated Texts
Learned vector representations of words are useful tools for many information
retrieval and natural language processing tasks due to their ability to capture
lexical semantics. However, while many such tasks involve or even rely on named
entities as central components, popular word embedding models have so far
failed to include entities as first-class citizens. While it seems intuitive
that annotating named entities in the training corpus should result in more
intelligent word features for downstream tasks, performance issues arise when
popular embedding approaches are naively applied to entity annotated corpora.
Not only are the resulting entity embeddings less useful than expected, but one
also finds that the performance of the non-entity word embeddings degrades in
comparison to those trained on the raw, unannotated corpus. In this paper, we
investigate approaches to jointly train word and entity embeddings on a large
corpus with automatically annotated and linked entities. We discuss two
distinct approaches to the generation of such embeddings, namely the training
of state-of-the-art embeddings on raw-text and annotated versions of the
corpus, as well as node embeddings of a co-occurrence graph representation of
the annotated corpus. We compare the performance of annotated embeddings and
classical word embeddings on a variety of word similarity, analogy, and
clustering evaluation tasks, and investigate their performance in
entity-specific tasks. Our findings show that it takes more than training
popular word embedding models on an annotated corpus to create entity
embeddings with acceptable performance on common test cases. Based on these
results, we discuss how and when node embeddings of the co-occurrence graph
representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information
Retrieva
Looking at Vector Space and Language Models for IR using Density Matrices
In this work, we conduct a joint analysis of both Vector Space and Language
Models for IR using the mathematical framework of Quantum Theory. We shed light
on how both models allocate the space of density matrices. A density matrix is
shown to be a general representational tool capable of leveraging capabilities
of both VSM and LM representations thus paving the way for a new generation of
retrieval models. We analyze the possible implications suggested by our
findings.Comment: In Proceedings of Quantum Interaction 201
Meaning-focused and Quantum-inspired Information Retrieval
In recent years, quantum-based methods have promisingly integrated the
traditional procedures in information retrieval (IR) and natural language
processing (NLP). Inspired by our research on the identification and
application of quantum structures in cognition, more specifically our work on
the representation of concepts and their combinations, we put forward a
'quantum meaning based' framework for structured query retrieval in text
corpora and standardized testing corpora. This scheme for IR rests on
considering as basic notions, (i) 'entities of meaning', e.g., concepts and
their combinations and (ii) traces of such entities of meaning, which is how
documents are considered in this approach. The meaning content of these
'entities of meaning' is reconstructed by solving an 'inverse problem' in the
quantum formalism, consisting of reconstructing the full states of the entities
of meaning from their collapsed states identified as traces in relevant
documents. The advantages with respect to traditional approaches, such as
Latent Semantic Analysis (LSA), are discussed by means of concrete examples.Comment: 11 page
Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations
In this paper we describe a novel framework for the discovery of the topical
content of a data corpus, and the tracking of its complex structural changes
across the temporal dimension. In contrast to previous work our model does not
impose a prior on the rate at which documents are added to the corpus nor does
it adopt the Markovian assumption which overly restricts the type of changes
that the model can capture. Our key technical contribution is a framework based
on (i) discretization of time into epochs, (ii) epoch-wise topic discovery
using a hierarchical Dirichlet process-based model, and (iii) a temporal
similarity graph which allows for the modelling of complex topic changes:
emergence and disappearance, evolution, and splitting and merging. The power of
the proposed framework is demonstrated on the medical literature corpus
concerned with the autism spectrum disorder (ASD) - an increasingly important
research subject of significant social and healthcare importance. In addition
to the collected ASD literature corpus which we will make freely available, our
contributions also include two free online tools we built as aids to ASD
researchers. These can be used for semantically meaningful navigation and
searching, as well as knowledge discovery from this large and rapidly growing
corpus of literature.Comment: In Proc. Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), 201
Effect of Tuned Parameters on a LSA MCQ Answering Model
This paper presents the current state of a work in progress, whose objective
is to better understand the effects of factors that significantly influence the
performance of Latent Semantic Analysis (LSA). A difficult task, which consists
in answering (French) biology Multiple Choice Questions, is used to test the
semantic properties of the truncated singular space and to study the relative
influence of main parameters. A dedicated software has been designed to fine
tune the LSA semantic space for the Multiple Choice Questions task. With
optimal parameters, the performances of our simple model are quite surprisingly
equal or superior to those of 7th and 8th grades students. This indicates that
semantic spaces were quite good despite their low dimensions and the small
sizes of training data sets. Besides, we present an original entropy global
weighting of answers' terms of each question of the Multiple Choice Questions
which was necessary to achieve the model's success.Comment: 9 page
- …
