1,759 research outputs found
Transport Theory beyond Binary Collisions
Using the Schwinger-Keldysh technique, we derive the transport equations for
a system of quantum scalar fields. We first discuss the general structure of
the equations and then their collision terms. Taking into account up to
three-loop diagrams in \phi^3 model and up to four-loop diagrams in \phi^4
model, we obtain the transport equations which include the contributions of
multi-particle collisions and particle production processes, in addition to
mean-field effects and binary interactions.Comment: 30 pages, 21 figures, minor changes, to appear in Phys. Rev.
Molecular and mass spectroscopic analysis of isotopically labeled organic residues
Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life
Phase space spinor amplitudes for spin 1/2 systems
The concept of phase space amplitudes for systems with continuous degrees of
freedom is generalized to finite-dimensional spin systems. Complex amplitudes
are obtained on both a sphere and a finite lattice, in each case enabling a
more fundamental description of pure spin states than that previously given by
Wigner functions. In each case the Wigner function can be expressed as the star
product of the amplitude and its conjugate, so providing a generalized Born
interpretation of amplitudes that emphasizes their more fundamental status. The
ordinary product of the amplitude and its conjugate produces a (generalized)
spin Husimi function. The case of spin-\half is treated in detail, and it is
shown that phase space amplitudes on the sphere transform correctly as spinors
under under rotations, despite their expression in terms of spherical
harmonics. Spin amplitudes on a lattice are also found to transform as spinors.
Applications are given to the phase space description of state superposition,
and to the evolution in phase space of the state of a spin-\half magnetic
dipole in a time-dependent magnetic field.Comment: 19 pages, added new results, fixed typo
Phenomenological approach to the critical dynamics of the QCD phase transition revisited
The phenomenological dynamics of the QCD critical phenomena is revisited.
Recently, Son and Stephanov claimed that the dynamical universality class of
the QCD phase transition belongs to model H. In their discussion, they employed
a time-dependent Ginzburg-Landau equation for the net baryon number density,
which is a conserved quantity. We derive the Langevin equation for the net
baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they
discussed the mode coupling induced through the {\it irreversible} current.
Here, we show the {\it reversible} coupling can play a dominant role for
describing the QCD critical dynamics and that the dynamical universality class
does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in
J.Phys.
Minimum Decision Cost for Quantum Ensembles
For a given ensemble of independent and identically prepared particles,
we calculate the binary decision costs of different strategies for measurement
of polarised spin 1/2 particles. The result proves that, for any given values
of the prior probabilities and any number of constituent particles, the cost
for a combined measurement is always less than or equal to that for any
combination of separate measurements upon sub-ensembles. The Bayes cost, which
is that associated with the optimal strategy (i.e., a combined measurement) is
obtained in a simple closed form.Comment: 11 pages, uses RevTe
Estimation of a probability in inverse binomial sampling under normalized linear-linear and inverse-linear loss
Sequential estimation of the success probability in inverse binomial
sampling is considered in this paper. For any estimator , its quality
is measured by the risk associated with normalized loss functions of
linear-linear or inverse-linear form. These functions are possibly asymmetric,
with arbitrary slope parameters and for
respectively. Interest in these functions is motivated by their significance
and potential uses, which are briefly discussed. Estimators are given for which
the risk has an asymptotic value as tends to , and which guarantee that,
for any in , the risk is lower than its asymptotic value. This
allows selecting the required number of successes, , to meet a prescribed
quality irrespective of the unknown . In addition, the proposed estimators
are shown to be approximately minimax when does not deviate too much from
, and asymptotically minimax as tends to infinity when .Comment: 4 figure
The cytoplasm of living cells: A functional mixture of thousands of components
Inside every living cell is the cytoplasm: a fluid mixture of thousands of
different macromolecules, predominantly proteins. This mixture is where most of
the biochemistry occurs that enables living cells to function, and it is
perhaps the most complex liquid on earth. Here we take an inventory of what is
actually in this mixture. Recent genome-sequencing work has given us for the
first time at least some information on all of these thousands of components.
Having done so we consider two physical phenomena in the cytoplasm: diffusion
and possible phase separation. Diffusion is slower in the highly crowded
cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be
obtained and their consequences explored, for example, monomer-dimer equilibria
are established approximately twenty times slower than in a dilute solution.
Phase separation in all except exceptional cells appears not to be a problem,
despite the high density and so strong protein-protein interactions present. We
suggest that this may be partially a byproduct of the evolution of other
properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl
Channel kets, entangled states, and the location of quantum information
The well-known duality relating entangled states and noisy quantum channels
is expressed in terms of a channel ket, a pure state on a suitable tripartite
system, which functions as a pre-probability allowing the calculation of
statistical correlations between, for example, the entrance and exit of a
channel, once a framework has been chosen so as to allow a consistent set of
probabilities. In each framework the standard notions of ordinary (classical)
information theory apply, and it makes sense to ask whether information of a
particular sort about one system is or is not present in another system.
Quantum effects arise when a single pre-probability is used to compute
statistical correlations in different incompatible frameworks, and various
constraints on the presence and absence of different kinds of information are
expressed in a set of all-or-nothing theorems which generalize or give a
precise meaning to the concept of ``no-cloning.'' These theorems are used to
discuss: the location of information in quantum channels modeled using a
mixed-state environment; the (classical-quantum) channels introduced by
Holevo; and the location of information in the physical carriers of a quantum
code. It is proposed that both channel and entanglement problems be classified
in terms of pure states (functioning as pre-probabilities) on systems of parts, with mixed bipartite entanglement and simple noisy channels belonging
to the category , a five-qubit code to the category , etc.; then by
the dimensions of the Hilbert spaces of the component parts, along with other
criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor
typographical errors correcte
Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals
Predictions of observable properties by density-functional theory
calculations (DFT) are used increasingly often in experimental condensed-matter
physics and materials engineering as data. These predictions are used to
analyze recent measurements, or to plan future experiments. Increasingly more
experimental scientists in these fields therefore face the natural question:
what is the expected error for such an ab initio prediction? Information and
experience about this question is scattered over two decades of literature. The
present review aims to summarize and quantify this implicit knowledge. This
leads to a practical protocol that allows any scientist - experimental or
theoretical - to determine justifiable error estimates for many basic property
predictions, without having to perform additional DFT calculations. A central
role is played by a large and diverse test set of crystalline solids,
containing all ground-state elemental crystals (except most lanthanides). For
several properties of each crystal, the difference between DFT results and
experimental values is assessed. We discuss trends in these deviations and
review explanations suggested in the literature. A prerequisite for such an
error analysis is that different implementations of the same first-principles
formalism provide the same predictions. Therefore, the reproducibility of
predictions across several mainstream methods and codes is discussed too. A
quality factor Delta expresses the spread in predictions from two distinct DFT
implementations by a single number. To compare the PAW method to the highly
accurate APW+lo approach, a code assessment of VASP and GPAW with respect to
WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These
differences are an order of magnitude smaller than the typical difference with
experiment, and therefore predictions by APW+lo and PAW are for practical
purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains
updated supplementary material
Classical Equations for Quantum Systems
The origin of the phenomenological deterministic laws that approximately
govern the quasiclassical domain of familiar experience is considered in the
context of the quantum mechanics of closed systems such as the universe as a
whole. We investigate the requirements for coarse grainings to yield decoherent
sets of histories that are quasiclassical, i.e. such that the individual
histories obey, with high probability, effective classical equations of motion
interrupted continually by small fluctuations and occasionally by large ones.
We discuss these requirements generally but study them specifically for coarse
grainings of the type that follows a distinguished subset of a complete set of
variables while ignoring the rest. More coarse graining is needed to achieve
decoherence than would be suggested by naive arguments based on the uncertainty
principle. Even coarser graining is required in the distinguished variables for
them to have the necessary inertia to approach classical predictability in the
presence of the noise consisting of the fluctuations that typical mechanisms of
decoherence produce. We describe the derivation of phenomenological equations
of motion explicitly for a particular class of models. Probabilities of the
correlations in time that define equations of motion are explicitly considered.
Fully non-linear cases are studied. Methods are exhibited for finding the form
of the phenomenological equations of motion even when these are only distantly
related to those of the fundamental action. The demonstration of the connection
between quantum-mechanical causality and causalty in classical phenomenological
equations of motion is generalized. The connections among decoherence, noise,
dissipation, and the amount of coarse graining necessary to achieve classical
predictability are investigated quantitatively.Comment: 100pages, 1 figur
- …
