284 research outputs found

    Tunable non-Gaussian resources for continuous-variable quantum technologies

    Full text link
    We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.Comment: 13 pages, 7 figure

    The first metazoa living in permanently anoxic conditions

    Get PDF
    Background: Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity.Results: During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes.Conclusions: This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen

    Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    Get PDF
    The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sam- pling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investi- gated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep- sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in pri- mary productivity of surface waters reported for the two re- gions. Similarly, sediments of the Catalan margin were char- acterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface wa- ters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more ev- ident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems

    On entanglement in neutrino mixing and oscillations

    Full text link
    We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.Comment: 14 pages, 2 figures. Presented at "Symmetries in Science Symposium - Bregenz 2009"

    Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic condtions and meiofaunal biodiversity

    Get PDF
    Numerous submarine canyons around the world are preferential conduits for episodic dense shelf water cas- cading (DSWC), which quickly modifies physical and chem- ical ambient conditions while transporting large amounts of material towards the base of slope and basin. Observations conducted during the last 20 yr in the Lacaze-Duthiers and Cap de Creus canyons (Gulf of Lion, NW Mediterranean Sea) report several intense DSWC events. The effects of DSWC on deep-sea ecosystems are almost unknown. To in- vestigate the effects of these episodic events, we analysed changes in the meiofaunal biodiversity inside and outside the canyon. Sediment samples were collected at depths varying from ca. 1000 to >2100m in May 2004 (before a major event), April 2005 (during a major cascading event) and in October 2005, August 2006, April 2008 and April 2009 (af- ter a major event). We report here that the late winter–early spring 2005 cascading led to a reduction of the organic mat- ter contents in canyon floor sediments down to 1800 m depth, whereas surface sediments at about 2200 m depth showed an increase. Our findings suggest that the nutritional material re- moved from the shallower continental shelf, canyon floor and flanks, and also the adjacent open slope was rapidly trans- ported to the deep margin. During the cascading event the meiofaunal abundance and biodiversity in the studied deep- sea sediments were significantly lower than after the event. Benthic assemblages during the cascading were significantly different from those in all other sampling periods in both the canyon and deep margin. After only six months from the cessation of the cascading, benthic assemblages in the impacted sediments were again similar to those observed in other sampling periods, thus illustrating a quick recovery. Since the present climate change is expected to increase the intensity and frequency of these episodic events, we anticipate that they will increasingly affect benthic bathyal ecosys- tems, which may eventually challenge their resilience

    Unveiling the biodiversity of deep-sea nematodes through metabarcoding: Are we ready to bypass the classical taxonomy?

    Get PDF
    Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intragenomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity

    Cross-cultural adaptation, validity and reliability study of the italian version of the back pain functional scale

    Get PDF
    SUMMARY Introduction. The Back Pain Functional Scale is a scale to assess disability in Low Back Pain patients. The purpose of this study was to translate, culturally adapt and validate the BPFS from the original English language into Italian. Materials and methods. Translation and cultural adaptation have been performed following international guidelines. 170 italian-speaking subjects with low back pain were recruited; 58 of them also performed the re-test. Internal consistency was assessed by calculating Cronbach’s Alpha and test-retest reliability was assessed by calculat ing the Intraclass Correlation Coefficient (ICC). Exploratory factor analysis and was performed to assess the construct validity and the correlation with other clinical scales was observed through Pearson’s correlation coefficients. Results. High internal consistency (Cronbach’s Alpha = 0.912) and very good test-re test reliability (ICC = 0.956) were found. Pearson’s correlation coefficient showed statistically significant correlations (p < 0.01) with the BPFS, FRI and ODI. Conclusions. The Italian version of the BPFS showed with good reliability and construct validity. This scale can be considered for the assessment of functional disabil ity in subjects with LBP: short, intuitive and easy to understand. It can certainly be used for both clinical practice and research

    Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation

    Get PDF
    Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60–100%) and HMs removal (21–100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs

    Effect of slow-release urea administration on production performance, health status, diet digestibility, and environmental sustainability in lactating dairy cows

    Get PDF
    The effects of partially replacing soybean meal (SBM) with a slow-release urea source (SRU) on production performance, feed efficiency, digestibility, and environmental sustainability of dairy cows were evaluated. A total of 140 lactating Holstein Frisian cows were allocated into two study groups: (i) control (diet entirely based on SBM), and (ii) treatment (diet of 0.22% on dry matter basis (d.m.)) of SRU. Milk yield, dry matter intake (DMI), feed conversion rate (FCR), body condition score (BCS), reproductive parameters, and milk quality were evaluated. The chemical composition of the feeds and feces were analyzed to calculate the in vivo digestibility of the two diets. The carbon footprint (CFP) and predicted methane (CH4 ) emissions were evaluated. The inclusion of SRU significantly increases milk yield, DMI, and FCR (p < 0.0001), whereas milk quality, BCS, and reproductive indicators were not affected (p > 0.05). In the treatment group, the digestibility of crude protein (CP) (p = 0.012), NDF (p = 0.039), and cellulose (p = 0.033) was significantly higher, while the other nutritional parameters weren’t affected. All the environmental parameters were significantly improved in the treatment group (p < 0.0001). Replacing SBM with SRU can be a strategy to enhance dairy cows’ sustainability due to improved production efficiency, reduced feed CFP, and predicted CH4 production

    Proteomics Profiling of Neuron-Derived Small Extracellular Vesicles From Human Plasma: Enabling Single-Subject Analysis

    Get PDF
    Small extracellular vesicles have been intensively studied as a source of biomarkers in neurodegenerative disorders. The possibility to isolate neuron-derived small extracellular vesicles (NDsEV) from blood represents a potential window into brain pathological processes. To date, the absence of sensitive NDsEV isolation and full proteome characterization methods has meant their protein content has been underexplored, particularly for individual patients. Here, we report a rapid method based on an immunoplate covalently coated with mouse monoclonal anti-L1CAM antibody for the isolation and the proteome characterization of plasma-NDsEV from individual Parkinson’s disease (PD) patients. We isolated round-shaped vesicles with morphological characteristics consistent with exosomes. On average, 349 ± 38 protein groups were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis, 20 of which are annotated in the Human Protein Atlas as being highly expressed in the brain, and 213 were shared with a reference NDsEV dataset obtained from cultured human neurons. Moreover, this approach enabled the identification of 23 proteins belonging to the Parkinson disease KEGG pathway, as well as proteins previously reported as PD circulating biomarkers
    corecore