189 research outputs found

    Role of Phosphorylation in the Control of Clathrin-Mediated Internalization of GPCR

    Get PDF
    The process by which G protein-coupled receptors (GPCRs) are internalized through the clathrin-coated vesicles involves interactions of multifunctional adaptor proteins. These interactions are tightly controlled by phosphorylation and dephosphorylation mechanisms resulting in the regulation of receptor endocytosis. However, the identities of the kinases involved in this process remained largely unknown until recently. This paper discusses advances in our knowledge of the important role played by protein phosphorylation in the regulation of the endocytic machinery and how phosphorylation controls the coated vesicle cycle

    Phosphoprotein analysis: from proteins to proteomes

    Get PDF
    Characterization of protein modification by phosphorylation is one of the major tasks that have to be accomplished in the post-genomic era. Phosphorylation is a key reversible modification occurring mainly on serine, threonine and tyrosine residues that can regulate enzymatic activity, subcellular localization, complex formation and degradation of proteins. The understanding of the regulatory role played by phosphorylation begins with the discovery and identification of phosphoproteins and then by determining how, where and when these phosphorylation events take place. Because phosphorylation is a dynamic process difficult to quantify, we must at first acquire an inventory of phosphoproteins and characterize their phosphorylation sites. Several experimental strategies can be used to explore the phosphorylation status of proteins from individual moieties to phosphoproteomes. In this review, we will examine and catalogue how proteomics techniques can be used to answer specific questions related to protein phosphorylation. Hence, we will discuss the different methods for enrichment of phospho-proteins and -peptides, and then the various technologies for their identification, quantitation and validation

    Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts

    Get PDF
    Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin

    The AGR2 interactome

    Get PDF

    Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down's syndrome

    Get PDF
    Children with Down's syndrome (DS) have 20–50-fold higher incidence of all leukaemias (lymphoid and myeloid), for reasons not understood. As incidence of many solid tumours is much lower in DS, we speculated that disturbed early haematopoietic differentiation could be the cause of increased leukaemia risk. If a common mechanism is behind the risk of both major leukaemia types, it would have to arise before the bifurcation to myeloid and lymphoid lineages. Using the transchromosomic system (mouse embryonic stem cells (ESCs)) bearing an extra human chromosome 21 (HSA21)) we analyzed the early stages of haematopoietic commitment (mesodermal colony formation) in vitro. We observed that trisomy 21 (T21) causes increased production of haemogenic endothelial cells, haematopoietic stem cell precursors and increased colony forming potential, with significantly increased immature progenitors. Transchromosomic colonies showed increased expression of Gata-2, c-Kit and Tie-2. A panel of partial T21 ESCs allowed us to assign these effects to HSA21 sub-regions, mapped by 3.5 kbp-resolution tiling arrays. The Gata-2 increase on one side, and c-Kit and Tie-2 increases on the other, could be attributed to two different, non-overlapping HSA21 regions. Using human-specific small interfering RNA silencing, we could demonstrate that an extra copy of RUNX1, but not ETS-2 or ERG, causes an increase in Tie-2/c-Kit levels. Finally, we detected significantly increased levels of RUNX1, C-KIT and PU.1 in human foetal livers with T21. We conclude that overdose of more than one HSA21 gene contributes to the disturbance of early haematopoiesis in DS, and that one of the contributors is RUNX1. As the observed T21-driven hyperproduction of multipotential immature precursors precedes the bifurcation to lymphoid and myeloid lineages, we speculate that this could create conditions of increased chance for acquisition of pre-leukaemogenic rearrangements/mutations in both lymphoid and myeloid lineages during foetal haematopoiesis, contributing to the increased risk of both leukaemia types in DS

    Sulconazole inhibits PD-1 expression in immune cells and cancer cells malignant phenotype through NF-κB and calcium activity repression

    Get PDF
    The overexpression of the immunoinhibitory receptor programmed death-1 (PD1) on T-cells is involved in immune evasion in cancer. The use of anti-PD-1/PDL-1 strategy has deeply changed the therapies of cancers and patient survival. However, their efficacy diverges greatly along with tumor type and patient populations. Thereby, novel treatments are needed to interfere with the anti-tumoral immune responses and propose an adjunct therapy. In the current study, we found that the antifungal drug Sulconazole (SCZ) inhibits PD-1 expression on activated PBMCs and T cells at the RNA and protein levels. SCZ repressed NF-κB and calcium signaling, both, involved in the induction of PD-1. Further analysis revealed cancer cells treatment with SCZ inhibited their proliferation, and migration and ability to mediate tumor growth in zebrafish embryos. SCZ found also to inhibit calcium mobilization in cancer cells. These results suggest the SCZ therapeutic potential used alone or as adjunct strategy to prevent T-cell exhaustion and promotes cancer cell malignant phenotype repression in order to improve tumor eradication.The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by La Region Nouvelle Aquitaine, Planet Vegetal, Ligue Contre le cancer and INSERM.Peer reviewe

    Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation

    Get PDF
    International audienceAnterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses

    Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix.

    Get PDF
    Contains fulltext : 81094.pdf (publisher's version ) (Open Access)BACKGROUND: Down syndrome (DS), caused by trisomy of human chromosome 21 (HSA21), is the most common genetic birth defect. Congenital heart defects (CHD) are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. RESULTS: Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21). We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. CONCLUSION: This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD
    corecore