34 research outputs found

    A conceptual model for anticipating the impact of landscape evolution on groundwater recharge in degrading permafrost environments

    Get PDF
    Temperatures in the arctic and subarctic are rising at more than twice the rate of the global average, driving the accelerated thawing of permafrost across the region. The impacts of permafrost degradation have been studied in the discontinuous permafrost zone at Umiujaq, in northern Quebec, Canada, for over 30 years, but the effects of changing land cover on groundwater recharge is not well understood. The water table fluctuation method was used to compute groundwater recharge using four years of water level data and soil moisture readings from five field sites characteristic of different stages of permafrost degradation and vegetation invasion. Results indicate that as vegetation grows taller, groundwater recharge increases, likely due to increased snow thickness. Results were then combined with a preexisting conceptual model that describes the evolution from tundra to shrubland and forests to create a new model for describing how groundwater recharge is affected by landscape evolution

    Hydrogeology of a complex Champlain Sea deposit (Quebec, Canada) : implications for slope stability

    Get PDF
    The thick sequences of marine clayey deposits which blanket the St. Lawrence Lowlands in south-eastern Canada are highly susceptible to landslides. With 89% of the population of the Province of Quebec living in this region, improving our understanding of the mechanisms causing landslides in these sediments is a matter of public security. To accomplish this goal, instruments were deployed at a field site in Sainte-Anne-de-la-Pérade, Quebec, Canada to monitor atmospheric, soil, and groundwater conditions. Field and laboratory measurements of soil geotechnical and hydraulic properties were also performed. Results indicate that the groundwater and pore pressure dynamics at the site cannot be explained using simplified site conceptual models. Further analysis indicates that groundwater dynamics and pore pressures in the massive clay deposits on-site are determined by (i) the highly-heterogeneous nature of the local geological materials (ii) the contrasting hydraulic and geotechnical properties of these materials, (iii) the presence of two unconfined aquifers at the site, one surficial and one at depth, and (iv), the presence of the Sainte-Anne River. These results were used to create a new conceptual model which illustrates the complex groundwater flow system present on site, and shows the importance of including hydrogeologic context in slope stability analysis

    Projet synthèse sur les ressources en eau souterraine du sud du Saint-Laurent : Outil pour assurer la gestion des eaux souterraines face aux changement climatiques

    Get PDF
    Dans le cadre du Projet synthèse sur les ressources en eau souterraine du sud du Saint-Laurent, l’Université du Québec à Montréal, l’Université Laval et L’INRS ETE, ont été mandatés afin de combler les lacunes de connaissances sur la recharge des eaux souterraines, l’inertie des aquifères, les débits de base et sur l’utilisation du RSESQ. Ce rapport présente la mise en commun des résultats des trois équipes de recherche. Les travaux de modélisation de la recharge et de l’écoulement de l’eau souterraine ont permis d’obtenir des valeurs de recharge mensuelle et du débit de base sur l’ensemble de la zone d’étude (35 875 km2) pour la période 1961-2017. La recharge a été simulée avec deux modèles de surface (HydroBudget et SWMB). La recharge annuelle moyenne pour toute la zone d’étude varie de 139 mm/an à 224 mm/an selon le modèle. La structure des modèles ainsi que la méthode de calibration (basée sur les débits de base) semblent expliquer la différence entre les deux modèles. Les modèles de calcul de la recharge ont ensuite été utilisés afin de simuler les changements dans le futur en utilisant les données de 12 scénarios climatiques. Les résultats indiquent que des augmentations de la recharge sont à prévoir durant la période hivernale et automnale. Les changements prévus de la recharge durant la période estivale sont faibles et incertains. L’impact des changements climatiques sur les débits de base simulés à l’aide des modèles souterrains reflète les changements de la recharge, avec une atténuation des impacts au printemps. L’augmentation de la recharge durant l’hiver ne permet pas d’atténuer l’effet de la baisse de la recharge prévu au printemps et potentiellement durant l’été. L’analyse des puits du RSESQ a permis de sélectionner 33 puits qui sont représentatifs pour le suivi des nappes et l’estimation de la recharge. Ces puits pourront servir dans la mise en œuvre d’un bilan annuel de l’état des nappes. L’analyse des données météorologiques a permis de déterminer 12 secteurs hydroclimatiques et quatre groupes. Cette classification, combinée avec l’analyse des séries temporelle permet d’orienter le développement futur du RSESQ. La mise en commun des résultats a permis d’émettre dix recommandations qui donnent des indications sur la gestion future du RSESQ et sur les travaux à mettre en œuvre ou poursuivre afin de maintenir et de mettre à jour les connaissances sur la recharge, les débits de base et l’état des nappes au Québec

    HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model

    Get PDF
    This article describes a modular ensemble-based data assimilation (DA) system which is developed for an integrated surface–subsurface hydrological model. The software environment for DA is the Parallel Data Assimilation Framework (PDAF), which provides various assimilation algorithms like the ensemble Kalman filters, non-linear filters, 3D-Var and combinations among them. The integrated surface–subsurface hydrological model is HydroGeoSphere (HGS), a physically based modelling software for the simulation of surface and variably saturated subsurface flow, as well as heat and mass transport. The coupling and capabilities of the modular DA system are described and demonstrated using an idealised model of a geologically heterogeneous alluvial river–aquifer system with drinking water production via riverbank filtration. To demonstrate its modularity and adaptability, both single and multivariate assimilations of hydraulic head and soil moisture observations are demonstrated in combination with individual and joint updating of multiple simulated states (i.e. hydraulic heads and water saturation) and model parameters (i.e. hydraulic conductivity). With the integrated model and this modular DA framework, we have essentially developed the hydrologically and DA-wise robust toolbox for developing the basic model for operational management of coupled surface water–groundwater resources.</p

    Data for "Assessing the impact of surface water and groundwater interactions for regional-scale simulations of water table elevation"

    No full text
    &lt;p&gt;This repository contains all the data used for the paper "Assessing the impact of surface water and groundwater interactions for regional-scale simulations of water table elevation".&lt;/p&gt; &lt;p&gt;&nbsp;&lt;/p&gt

    Quantification et réduction des incertitudes associées aux modèles hydrodynamiques de gestion quantitative des eaux souterraines

    No full text
    The sustainable management of aquifers is a growing problem since the end of the 20th century. For groundwater withdrawals to be considered as sustainable, the capture of environmental flow should remain acceptable over a long-term period. Groundwater modeling is an essential tool to move from a reactive management to an anticipatory approach. Hydrodynamic parameters characterizing the aquifers are often poorly constrained by prior information or history matching. The estimation of these parameters by inverse modeling suffers from the non-uniqueness of the solution. This is an issue when predicted values by groundwater model are used to define legal frameworks. A simplified approach for the quantification of uncertainties (linear analysis) is presented as a pragmatic alternative to stochastic methods that cannot be applied to operational groundwater management models. The implementation of a pilot experimental station brings possibility to evaluate different approaches for the estimate of groundwater recharge and hydrodynamic parameters estimation in order to reduce the uncertainty of groundwater management models. A 1D coupled soil-surface model was used to demonstrate that, in the studied context, matrix potential measurements alone appear as sufficient to constrain coupled model-based estimates of recharge. In addition, a joint interpretation of an unconfined aquifer-test and water table fluctuations has been conducted. Reliable estimates of groundwater recharge can be obtained from water level records when considering long recharge events and a consistent value of drainable porosity. This thesis highlights (i) the necessity to use algorithmic methods for parameters estimation and uncertainty quantification for a groundwater management model; (ii) the interest of different methods to collect reliable hydrodynamic parameters and groundwater recharge estimation. This work can be used to support a monitoring network for parameters estimation at a basin scale.La gestion durable des aquifères est une problématique grandissante depuis la fin du 20ème siècle. L'exploitation d’une ressource en eau souterraine est qualifiée de durable lorsque la capture des flux environnementaux est considérée comme acceptable sur le long terme. La modélisation hydrodynamique s'impose comme un outil indispensable pour remplacer une gestion réactive par une approche anticipative. Les paramètres hydrodynamiques qui caractérisent un aquifère et contrôlent les variables de sorties des modèles hydrodynamiques sont souvent mal connus. L’estimation de ces paramètres par la modélisation inverse souffre de la non-unicité de la solution optimale. Une approche simplifiée pour la quantification des incertitudes (analyse linéaire) est présentée comme une alternative pragmatique à des méthodes stochastiques inapplicables pour des modèles opérationnels. A partir de la réalisation d’une station expérimentale pilote, différentes méthodes (parfois complémentaires) ont été évaluées pour contraindre la recharge météorique et les propriétés hydrauliques d’un aquifère afin de réduire l’incertitude prédictive. La réalisation d’un modèle vertical couplé sol-surface a permis de démontrer que, dans le contexte étudié, la tension matricielle apporte suffisamment d’informations afin de contraindre la recharge prédite. Une interprétation conjointe d’un essai de nappe libre et des fluctuations piézométriques a permis une estimation intégrée de la recharge et des paramètres hydrodynamiques de la nappe libre. Ce travail de thèse a ainsi permis (i) de démontrer l’intérêt de disposer de méthodes algorithmiques pour la calibration et la quantification des incertitudes paramétriques pour un modèle hydrodynamique de gestion ; (ii) de mener une réflexion méthodologique sur l’utilisation de méthodes existantes afin d’apporter de l’information complémentaire fiable sur les paramètres hydrodynamiques ainsi que sur la recharge météorique. Ce travail offre des perspectives quant à la mise en place d’un réseau de suivi complet à l’échelle d’un bassin hydrogéologique

    Data for "Assessing the impact of surface water and groundwater interactions for regional-scale simulations of water table elevation"

    No full text
    &lt;p&gt;This repository contains all the data used for the paper "Assessing the impact of surface water and groundwater interactions for regional-scale simulations of water table elevation".&lt;/p&gt; &lt;p&gt;&nbsp;&lt;/p&gt

    Quantification and reduction of quantitative groundwater management models uncertainties

    No full text
    La gestion durable des aquifères est une problématique grandissante depuis la fin du 20ème siècle. L'exploitation d’une ressource en eau souterraine est qualifiée de durable lorsque la capture des flux environnementaux est considérée comme acceptable sur le long terme. La modélisation hydrodynamique s'impose comme un outil indispensable pour remplacer une gestion réactive par une approche anticipative. Les paramètres hydrodynamiques qui caractérisent un aquifère et contrôlent les variables de sorties des modèles hydrodynamiques sont souvent mal connus. L’estimation de ces paramètres par la modélisation inverse souffre de la non-unicité de la solution optimale. Une approche simplifiée pour la quantification des incertitudes (analyse linéaire) est présentée comme une alternative pragmatique à des méthodes stochastiques inapplicables pour des modèles opérationnels. A partir de la réalisation d’une station expérimentale pilote, différentes méthodes (parfois complémentaires) ont été évaluées pour contraindre la recharge météorique et les propriétés hydrauliques d’un aquifère afin de réduire l’incertitude prédictive. La réalisation d’un modèle vertical couplé sol-surface a permis de démontrer que, dans le contexte étudié, la tension matricielle apporte suffisamment d’informations afin de contraindre la recharge prédite. Une interprétation conjointe d’un essai de nappe libre et des fluctuations piézométriques a permis une estimation intégrée de la recharge et des paramètres hydrodynamiques de la nappe libre. Ce travail de thèse a ainsi permis (i) de démontrer l’intérêt de disposer de méthodes algorithmiques pour la calibration et la quantification des incertitudes paramétriques pour un modèle hydrodynamique de gestion ; (ii) de mener une réflexion méthodologique sur l’utilisation de méthodes existantes afin d’apporter de l’information complémentaire fiable sur les paramètres hydrodynamiques ainsi que sur la recharge météorique. Ce travail offre des perspectives quant à la mise en place d’un réseau de suivi complet à l’échelle d’un bassin hydrogéologique.The sustainable management of aquifers is a growing problem since the end of the 20th century. For groundwater withdrawals to be considered as sustainable, the capture of environmental flow should remain acceptable over a long-term period. Groundwater modeling is an essential tool to move from a reactive management to an anticipatory approach. Hydrodynamic parameters characterizing the aquifers are often poorly constrained by prior information or history matching. The estimation of these parameters by inverse modeling suffers from the non-uniqueness of the solution. This is an issue when predicted values by groundwater model are used to define legal frameworks. A simplified approach for the quantification of uncertainties (linear analysis) is presented as a pragmatic alternative to stochastic methods that cannot be applied to operational groundwater management models. The implementation of a pilot experimental station brings possibility to evaluate different approaches for the estimate of groundwater recharge and hydrodynamic parameters estimation in order to reduce the uncertainty of groundwater management models. A 1D coupled soil-surface model was used to demonstrate that, in the studied context, matrix potential measurements alone appear as sufficient to constrain coupled model-based estimates of recharge. In addition, a joint interpretation of an unconfined aquifer-test and water table fluctuations has been conducted. Reliable estimates of groundwater recharge can be obtained from water level records when considering long recharge events and a consistent value of drainable porosity. This thesis highlights (i) the necessity to use algorithmic methods for parameters estimation and uncertainty quantification for a groundwater management model; (ii) the interest of different methods to collect reliable hydrodynamic parameters and groundwater recharge estimation. This work can be used to support a monitoring network for parameters estimation at a basin scale
    corecore