4,272 research outputs found
Recommended from our members
Are low-cost sensors good enough for IAQ controls?
This study used laboratory testing to evaluate low-cost (about 200 US) IAQ monitors that measured PM2.5 to determine if they are suitable for controlling IAQ for ventilation or air cleaning systems.
Current Indoor Air Quality (IAQ) standards and approaches to minimizing pollutants depend almost exclusively on using dilution with outdoor air for some generic, continuously generated contaminant (e.g., ASHRAE Standard 62.2-2016). Some standards include measurement of CO2 (e.g., EN 13779 standard (CEN, 2007) and NEN 8088 (NEN, 2011)) – however this is not because CO2 itself is a pollutant of concern, but rather because it can be used as an occupancy indicator or as something that correlates with bioeffluents. Ideally, we would like to measure contaminant concentrations directly and ventilate to control their concentration within acceptable limits. This would ensure that concentrations do not got too high (as they can if emission rates exceed our assumptions) and also allow for ventilation reductions, and resulting energy savings, if concentrations are low. Until recently, it was impractical to consider direct contaminant control in residential (and many commercial) spaces due to the high cost and maintenance requirements for monitoring equipment. In the past couple of years low-cost sensors have been developed for some contaminants of concern – the greatest example of which is for particles. These sensors have been incorporated into low-cost (<250 US) IAQ monitors. This has opened up the possibility of direct control of ventilation (and filtration systems) by sensing particles. However, it is important to evaluate these monitors to determine if their results are sufficiently good to control a ventilation system
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion
We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa
A simple and efficient face detection algorithm for video database applications
The objective of this work is to provide a simple and yet efficient tool to detect human faces in video sequences. This information can be very useful for many applications such as video indexing and video browsing. In particular the paper focuses on the significant improvements made to our face detection algorithm presented by Albiol, Bouman and Delp (see IEEE Int. Conference on Image Processing, Kobe, Japan, 1999). Specifically, a novel approach to retrieve skin-like homogeneous regions is presented, which is later used to retrieve face images. Good results have been obtained for a large variety of video sequences.Peer ReviewedPostprint (published version
- …
