1,194 research outputs found

    Abundance of Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, 1994–2000

    Get PDF
    Annual abundance estimates of belugas, Delphinapterus leucas, in Cook Inlet were calculated from counts made by aerial observers and aerial video recordings. Whale group-size estimates were corrected for subsurface whales (availability bias) and whales that were at the surface but were missed (detection bias). Logistic regression was used to estimate the probability that entire groups were missed during the systematic surveys, and the results were used to calculate a correction to account for the whales in these missed groups (1.015, CV = 0.03 in 1994–98; 1.021, CV = 0.01 in 1999– 2000). Calculated abundances were 653 (CV = 0.43) in 1994, 491 (CV = 0.44) in 1995, 594 (CV = 0.28) in 1996, 440 (CV = 0.14) in 1997, 347 (CV = 0.29) in 1998, 367 (CV = 0.14) in 1999, and 435 (CV = 0.23, 95% CI=279–679) in 2000. For management purposes the current Nbest = 435 and Nmin = 360. These estimates replace preliminary estimates of 749 for 1994 and 357 for 1999. Monte Carlo simulations indicate a 47% probability that from June 1994 to June 1998 abundance of the Cook Inlet stock of belugas was depleted by 50%. The decline appears to have stopped in 1998

    The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

    Get PDF
    It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols

    Oceanic distribution of inorganic germanium relative to silicon: Germanium discrimination by diatoms

    Get PDF
    Seventeen inorganic germanium and silicon concentration profiles collected from the Atlantic, southwest Pacific, and Southern oceans are presented. A plot of germanium concentration versus silicon concentration produced a near-linear line with a slope of 0.760 × 10−6 (±0.004) and an intercept of 1.27 (±0.24) pmol L−1 (r2 = 0.993, p < 0.001). When the germanium-to-silicon ratios (Ge/Si) were plotted versus depth and/or silicon concentrations, higher values are observed in surface waters (low in silicon) and decreased with depth (high in silicon). Germanium-to-silicon ratios in diatoms (0.608–1.03 × 10−6) and coupled seawater samples (0.471–7.46 × 10−6) collected from the Southern Ocean are also presented and show clear evidence for Ge/Si fractionation between the water and opal phases. Using a 10 box model (based on PANDORA), Ge/Si fractionation was modeled using three assumptions: (1) no fractionation, (2) fractionation using a constant distribution coefficient (KD) between the water and solid phase, and (3) fractionation simulated using Michaelis-Menten uptake kinetics for germanium and silicon via the silicon uptake system. Model runs indicated that only Ge/Si fractionation based on differences in the Michaelis-Menten uptake kinetics for germanium and silicon can adequately describe the data. The model output using this fractionation process produced a near linear line with a slope of 0.76 × 10−6 and an intercept of 0.92 (±0.28) pmol L−1, thus reflecting the oceanic data set. This result indicates that Ge/Si fractionation in the global ocean occurs as a result of subtle differences in the uptake of germanium and silicon via diatoms in surface waters

    Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals

    Get PDF
    Recent analyses have revealed trends over the past 20-30 years of decreasing sea ice extent in the Arctic Ocean coincident with warming trends. Such trends may be indicative of the polar amplifications of warming predicted for the next several decades in response to increasing atmospheric CO2. We have summarized these predictions and nonuniform patterns of arctic climate change in order to address their potential effects on marine mammals. Since recent trends in sea ice extent are nonuniform, the direct and indirect effects on marine mammals are expected to vary geographically. Changes in the extent and concentration of sea ice may alter the seasonal distributions, geographic ranges, patterns of migration, nutritional status, reproductive success, and ultimately the abundance and stock structure of some species. Ice-associated seals, which rely on suitable ice substrate for resting, pupping, and molting, may be especially vulnerable to such changes. As recent decreases in ice coverage have been more extensive in the Siberian Arctic (60 E-180 E) than in the Beaufort Sea and western sectors, we speculate that marine mammal populations in the Siberian Arctic may be among the first to experience climate-induced geographic shifts or altered reproductive capacity due to persistent changes in ice extent. Alteration in the extent and productivity of ice-edge systems may affect the density and distribution of important ice-associated prey of marine mammals, such as arctic cod, Boreogadus saida, and sympagic ("with ice") amphipods. Present climate models, however, are insufficient to predict regional ice dynamics, winds, mesoscale features, and mechanisms of nutrient resupply, which must be known to predict productivity and trophic response. Therefore, it is critical that mesoscale process-oriented studies identify the biophysical coupling required to maintain suitable prey availability and ice-associated habitat for marine mammals on regional arctic scales. Only an integrated ecosystems approach can address the complexity of factors determining reproductivity and cascading trophic dynamics in a warmer Arctic. This approach, integrated with monitoring of key indicator species (e.g., bowhead whale, ringed seal, and beluga), should be a high priority.Des analyses récentes ont fait apparaître des tendances, au cours des 20 à 30 dernières années, à la diminution de l'étendue des glaces de mer dans l'océan Arctique qui coïncident avec des tendances au réchauffement. Ces tendances pourraient être symptomatiques de l'amplification polaire du réchauffement prédit pour les prochaines décennies suite à la hausse de CO2 dans l'atmosphère. Cet article offre un résumé de ces prédictions et des schémas non uniformes de changement climatique dans l'Arctique, en vue d'examiner leurs retombées potentielles sur les mammifères marins. Vu que les tendances récentes de l'étendue des glaces de mer ne sont pas uniformes, les retombées directes et indirectes sur les mammifères marins devraient varier sur le plan géographique. Des changements dans l'étendue et la concentration de la glace de mer peuvent modifier les distributions saisonnières, les aires géographiques, les schémas de migration, l'état nutritionnel, le succès de la reproduction, et, en fin de compte, l'abondance et la structure de la population de certaines espèces. Les phoques associés à la glace, qui dépendent d'un support glaciel pour le repos, la mise bas et la mue, seraient particulièrement affectés par de tels changements. Vu que les diminutions récentes de couverture de glace ont été plus importantes dans l'Arctique sibérien (de 60° E. à 180° E.) que dans la mer de Beaufort et les secteurs occidentaux, on pense que les populations de mammifères marins dans l'Arctique sibérien pourraient être les premières à faire l'expérience de variations géographiques dues au climat ou d'une modification de leur capacité de reproduction causée par des changements chroniques dans l'étendue de glace. Une modification de l'étendue et de la productivité des systèmes de la marge glaciaire pourrait affecter la densité et la distribution de proies associées à la glace importantes pour les mammifères marins, comme la morue arctique Boreogadus saida et les amphipodes vivant en contact avec la glace. Les modèles climatologiques actuels ne sont toutefois pas en mesure de prédire les dynamiques régionales de la glace, les vents, les caractéristiques à mésoéchelle ainsi que les mécanismes de réapprovisionnement en éléments nutritifs, tous éléments que l'on doit connaître pour pouvoir prédire la productivité et la réponse trophique. Il est par conséquent critique que des études à mésoéchelle axées sur les processus identifient les interactions du milieu naturel nécessaires pour maintenir, à des échelles arctiques régionales, une disponibilité de proies et un habitat associé à la glace appropriés aux mammifères marins. Seule une approche intégrée des écosystèmes peut envisager la complexité des facteurs déterminant la productivité et les dynamiques trophiques qui en résultent dans un Arctique plus tempéré. Cette approche, intégrée avec la surveillance d'espèces indicateurs clés (p. ex., la baleine boréale, le phoque annelé et le bélouga), devrait constituer une haute priorité

    Life history characteristics of a potential invasive Ponto-Caspian goby, Neogobius fluviatilis in natural lakes from its native range (Black Sea region of Turkey)

    Get PDF
    To fill the gap in and provide baseline knowledge for developing increased understandings of the factors driving the invasiveness of the Ponto-Caspian gobiid Neogobius fluviatilis, their life history traits (as somatic growth and reproduction) were studied in three natural freshwater lakes in its native range. These populations were characterised by slow somatic growth rates, being the slowest reported across all of their native and non-native ranges. Ages were recorded to seven years old. Across the three lakes, there was considerable variability in their sex ratios and reproductive traits (including length at maturity and fecundity at length and age), revealing considerable inter-population variability. These data thus suggest N. fluviatilis has considerable plasticity in the expression of their life history traits, with this plasticity argued as a key factor in facilitating their ability to establish and invade new waters following introductions

    Cetacean Habitat Selection in the Alaskan Arctic during Summer and Autumn

    Get PDF
    Ten years (1982-91) of sighting data from aerial surveys offshore of northern Alaska were analyzed to investigate seasonal variability in cetacean habitat selection. Distinct habitats were described for bowhead whales (Balaena mysticetus), white whales (Delphinapterus leucas), and gray whales (Eschrichtius robustus) on the basis of habitat selection ratios calculated for bathymetric and ice cover regimes. In summer, bowheads selected continental slope waters and moderate ice conditions; white whales selected slope and basin waters and moderate to heavy ice conditions; and gray whales selected coastal/shoal waters and open water. In autumn, bowheads selected inner shelf waters and light ice conditions; white whales selected outer shelf and slope waters and moderate to heavy ice; and gray whales selected coastal and shoal/trough habitats in light ice and open water. Habitat differences among species were significant in both seasons (ANOVA F &gt; 28, p &lt; 0.00001). Interseasonal depth and ice cover habitats were significantly different for bowhead whales (p &lt; 0.00002), but not for gray whales (p &gt; 0.35). White whale depth habitat was significantly different between seasons (p &lt; 0.00002), but ice cover habitat was not (p &lt; 0.08). Des données d'observation réalisées sur dix années (1982-1991) grâce à des relevés aériens au large de l'Alaska septentrional ont été analysées dans le cadre de recherches sur la variabilité saisonnière dans la sélection de l'habitat des cétacés. On a décrit des habitats distincts pour la baleine boréale (Balaena mysticetus), la baleine blanche (Delphinapterus leucas) et la baleine grise de Californie (Eschrichtius robustus) en se fondant sur les taux de sélection de l'habitat calculés pour le régime bathymétrique et celui de la couverture de glace. En été, la baleine boréale choisissait les eaux de la pente continentale et des conditions de glace modérée; la baleine blanche choisissait les eaux de la pente continentale et du bassin océanique, et des conditions de glace allant de modérée à épaisse; et la baleine grise choisissait des eaux côtières et de hauts-fonds ainsi que l'eau libre. En automne, la baleine boréale choisissait les eaux intérieures du plateau continental, où se trouvait une faible concentration de glace; la baleine blanche choisissait les eaux à l'extérieur du plateau et sur la pente, ainsi qu'une glace allant de modérée à épaisse; et la baleine grise choisissait des habitats côtiers et de hauts-fonds ou des fossés à faible concentration de glace et à eau libre. Les différences d'habitat entre les espèces étaient importantes durant les deux saisons (ANOVA F &gt; 28, p &lt; 0,00001). D'une saison à une autre, les habitats différaient sensiblement quant à la profondeur et à la couverture de glace pour la baleine boréale (p &lt; 0,00002), mais pas pour la baleine grise (p &gt; 0,35). La profondeur de l'habitat pour la baleine blanche variait sensiblement d'une saison à une autre (p &lt;0,00002), mais pas la couverture de glace (p &lt; 0,08).

    A particle introduction experiment in Santa Catalina Basin sediments: Testing the age-dependent mixing hypothesis

    Get PDF
    The occurrence of age-dependent mixing, a process by which recently deposited, food-rich particles undergo more intense bioturbation than older, food-poor particles, could dramatically alter patterns of organic-matter diagenesis in deep-sea sediments. To explicitly test for age-dependent mixing, an in-situ particle introduction experiment was conducted on the bathyal Santa Catalina Basin floor. Mixtures of radioisotope-tagged particles representing a food quality gradient were dispersed in small amounts on the seafloor and sampled over periods of 0 to 594 days. Introduced particle types were all similar in size and included fresh diatoms ( young particles), surface sediments ( intermediate-age particles), and particles from 30-cm deep in the sediment column ( old particles). This approach permitted evaluation of particle mixing intensity for several particle ages and provided an independent check on mixing coefficients determined from naturally occurring radioisotopes (234Thxs and 210Pbxs). All particles experienced rapid (\u3c6 h) transport into the upper 2 cm of the seabed resulting from passive deposition down burrows or extremely rapid bioturbation. Intense bioturbation on 4-d time scales included both biodiffusive and nondiffusive (bioadvective and nonlocal) transport. Bioturbation of tracers exhibited time (or age ) dependence in two ways: (1) Diffusive mixing intensity for all tracer types decreased with time (4-d Db = 293 cm2 y-1, Db at 520 d = 2.6 cm2 y-1), and (2) The nature of bioturbation changed over this period with more efficient bioadvection and nonlocal exchange giving way to slower diffusive mixing. Both changes are consistent with the age-dependent-mixing hypothesis. Biodiffusive mixing was not measurably selective, with no significant preference for a single particle type. In contrast, nondiffusive transport, likely caused by deposit-feeding cirratulid polychaetes, exhibited distinct particle selectivity, especially over 4-d time scales, with the diatom tracer transported most rapidly to depth. Degradation of the labile organic carbon in diatoms most likely led to decreasing selection of diatoms by deposit feeders until diatoms and old sediment particles experienced comparable mixing intensities

    Feeding selectivity and rapid particle processing by deep-sea megafaunal deposit feeders: A 234Th tracer approach

    Get PDF
    Deposit-feeding megafauna occur in virtually all deep-sea environments, yet their feeding selectivity and particle processing rates are poorly known. Excess 234Th activity is commonly used asa geochemical tracer for recently settled (, 100-d old) particles in the quiescent deep sea, but it has rarely been applied to the study of deposit feeders. To explore the selectivity and rates of megafaunal deposit feeding, we compared excess 234Th activities in the gut contents of deposit feeders from Santa Catalina Basin (SCB) (~ 1200 m depth) and the Hawaiian slope (~ 1680 m) to the activity of surface sediments and, in SCB, to material from sediment traps moored, 150 m above the seafloor. We also measured concentrations of chlorophylla and phaeopigments in animal guts and surface sediments to evaluate feeding selectivity. In the SCB, excess 234Th (234Thxs) activities in the guts of four species of surface-deposit feeders were 14–17 fold greater than those of the top 5 mm of sediment. Pannychiamoseleyi and Scotoplanes globosa, two highly mobile, surface-deposit-feeding elasipodid holothuri-ans, were the most enriched in gut 234Thxs activity, suggesting that these species fed very selectivelyon particles settled to the seafloor within the previous, 20 d. Pannychia moseleyi guts also exhibited 500-fold enrichment of chlorophyll a relative to surface sediments indicating highly selective ingestion of phytodetritus. Chiridota sp., a burrowing, surface-deposit-feeding, chiridotid holothurian, and Bathybembix bairdii, a surface-deposit-feeding trochid gastropod, were less enriched in gut 234Thxs activity, reflecting lower mobility and/or less selectivity at time of particle pickup. A subsurface-deposit-feeding, molpadiid holothurian was not enriched in gut 234Thxs activity compared to surface sediments, but was greatly enriched compared to average activities at its presumed feeding depth of 6–7 cm. On the Hawaiian slope, gut contents of two surface-deposit feeders, the synallactidholothurians Mesothuria carnosa and Paleopatides retifer, were not enriched in 234Thxs activity;however, M. carnosa and Phryssocystis sp. (a surface-deposit-feeding echinoid) were enriched in chlorophyll a, suggesting that the Hawaiian slope species are also selective feeders. Presumably, frequent sediment resuspension makes 234Thxs activity a poor tracer for recently settled, food-rich particles on the Hawaiian slope. Based on a newly developed 234Th-flux model, we calculate that the three dominant megafaunal, surface-deposit feeders in SCB consumed on average 39–52% (s.e.13–27%) of the daily flux of 234Thxs activity to the SCB floor. By chemically altering (e.g., digesting) and redistributing recently settled particulate organic matter, these megafauna are likely to substantially influence carbon diagenesis and food-web structure in this bathyal habitat

    Bioturbation and particle transport in Carolina slope sediments: A radiochemical approach

    Get PDF
    In situ tracer experiments investigated short-term sediment mixing processes at two Carolina continental margin sites (water depth = 850 m) characterized by different organic C fluxes, 234Th mixing coefficients (Db) and benthic assemblages. Phytoplankton, slope sediment, and sand-sized glass beads tagged with 210Pb, 113Sn, and 228Th, respectively, were placed via submersible at the sediment-water interface at both field sites (Site I off Cape Fear, and Site III off Cape Hatteras). Experimental plots were sampled at 0, 1.5 days, and 90 days after tracer emplacement to examine short-term, vertical transport. Both sites are initially dominated by nonlocal mixing. Transport to the bottom of the surface mixed layer at both sites occurs more rapidly than 234Th-based Db values predict; after 1.5 days, tagged particles were observed 5 cm below the sediment-water interface at Site I and 12 cm below at Site III. Impulse tracer profiles after 90 days at Site III exhibit primarily diffusive distributions, most likely due to a large number of random, nonlocal mixing events. The Db values determined from 90-day particle tagging experiments are comparable to those obtained from naturally occurring 234Th profiles (~100-day time scales) from nearby locations. The agreement between impulse tracer mixing coefficients and steady-state natural tracer mixing coefficients suggests that the diffusive analogue for bioturbation on monthly time scales is a realistic and useful approach. Tracer profiles from both sites exhibit some degree of particle selective mixing, but the preferential transport of the more labile carbon containing particles only occurred 30% of the time. Consequently, variations in the extent to which age-dependent mixing occurs in marine sediments may depend on factors such as faunal assemblage and organic carbon flux
    corecore