53 research outputs found

    The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax

    Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death

    Get PDF
    Acknowledgements We wish to thank the Barts Cancer Institute tissue bank for sample collection and processing. This research was supported by the BCI Flow cytometry facility (CRUK Core Award C16420/A18066). This work was supported by the Wellcome Trust (PG, 109967/Z/15/Z), the American Society of Haematology (PG, Global Research Award) and Cancer Research UK (PG, Advanced Clinician Scientist fellowship, C57799/A27964). K.R-P. was supported by the Academy of Medical Sciences (SBF004\1099) J.H.M.P. was supported by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. K.T. was funded by Wellcome Trust (Grant References: RG94424, RG83195, G106133), UKRI Medical Research Council (RG83195) and Leukaemia UK (G108148).Peer reviewedPublisher PD

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia

    No full text
    Despite significant recent advances in our understanding of the biology and genetics of acute myeloid leukemia (AML), current AML therapies are mostly based on a backbone of standard chemotherapy which has remained mostly unchanged for over 20 years. Several novel therapies, mostly targeting neomorphic/activating recurrent mutations found in AML patients, have only recently been approved following encouraging results, thus providing the first evidence of a more precise and personalized approach to AML therapy. Rewired metabolism has been described as a hallmark of cancer and substantial evidence of its role in AML establishment and maintenance has been recently accrued in preclinical models. Interestingly, unique metabolic changes are generated by specific AML recurrent mutations or in response to diverse AML therapies, thus creating actionable metabolic vulnerabilities in specific patient groups. In this review we will discuss the current evidence supporting a role for rewired metabolism in AML pathogenesis and how these metabolic changes can be leveraged to develop novel personalized therapies

    Bone Marrow Stromal Cells Enhance Differentiation of Acute Myeloid Leukemia Induced by Pyrimidine Synthesis Inhibitors.

    No full text
    Acute myeloid leukemia (AML) is a heterogeneous group of hematologic malignancies characterized by differentiation arrest, high relapse rates, and poor survival. The bone marrow (BM) microenvironment is recognized as a critical mediator of drug resistance and a primary site responsible for AML relapse. Our previous study reported that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induces AML cell differentiation by inhibiting pyrimidine synthesis and activating Checkpoint kinase 1. While the protective effect of BM stroma on leukemia cells in response to cytotoxic drugs is well-documented, its effect on AML differentiation remains less explored. In this study, we investigated the impact of stromal cell lines and primary mesenchymal stromal cells (MSCs) on AML cell line differentiation triggered by AICAr and brequinar, a known dihydroorotate dehydrogenase (DHODH) inhibitor. Our findings indicate that the mouse MS-5 stromal cell line, known for its cytoprotective effects, does not inhibit AML cell differentiation induced by pyrimidine synthesis inhibitors. Interestingly, AICAr caused morphological changes and growth arrest in MS-5 stromal cells via an AMPK-dependent pathway. Human stromal cell lines HS-5 and HS-27, as well as primary MSCs isolated from patient bone marrow, were superior in promoting AML differentiation compared to mouse cells in response to AICAr and brequinar, with the inhibitors not significantly affecting the stromal cells themselves. In conclusion, our study highlights the supportive role of human BM MSCs in enhancing the differentiation effects of pyrimidine synthesis inhibitors on AML cells, suggesting that AML treatment strategies focusing on differentiation rather than cell killing may be successful in clinical settings
    corecore