30 research outputs found
Impacts of food contact chemicals on human health: a consensus statement
Food Packaging Forum Foundation (FPF) and the Plastics Solution Fund (PSF
Microplastic in angling baits as a cryptic source of contamination in European freshwaters.
High environmental microplastic pollution, and its largely unquantified impacts on organisms, are driving studies to assess their potential entry pathways into freshwaters. Recreational angling, where many anglers release manufactured baits into freshwater ecosystems, is a widespread activity with important socio-economic implications in Europe. It also represents a potential microplastic pathway into freshwaters that has yet to be quantified. Correspondingly, we analysed three different categories of industrially-produced baits ('groundbait', 'boilies' and 'pellets') for their microplastic contamination (particles 700 µm to 5 mm). From 160 samples, 28 microplastics were identified in groundbait and boilies, with a mean concentration of 17.4 (± 48.1 SD) MP kg-1 and 6.78 (± 29.8 SD) mg kg-1, yet no microplastics within this size range were recorded in the pellets. Microplastic concentrations significantly differed between bait categories and companies, but microplastic characteristics did not vary. There was no correlation between microplastic contamination and the number of bait ingredients, but it was positively correlated with C:N ratio, indicating a higher contamination in baits with higher proportion of plant-based ingredients. We thus reveal that bait microplastics introduced accidentally during manufacturing and/or those originating from contaminated raw ingredients might be transferred into freshwaters. However, further studies are needed to quantify the relative importance of this cryptic source of contamination and how it influences microplastic levels in wild fish
Metamorphic T3-response genes have specific co-regulator requirements.
Thyroid hormone receptors (TRs) have several regulatory functions in vertebrates. In the absence of thyroid hormone (T3; tri-iodothyronine), apo-TRs associate with co-repressors to repress transcription, whereas in the presence of T3, holo-TRs engage transcriptional coactivators. Although many studies have addressed the molecular mechanisms of T3 action, it is not known how specific physiological responses arise. We used T3-dependent amphibian metamorphosis to analyse how TRs interact with particular co-regulators to differentially regulate gene expression during development. Using chromatin immuno-precipitation to study tissue from pre-metamorphic tadpoles, we found that TRs are physically associated with T3-responsive promoters, whether or not T3 is present. Addition of T3 results in histone H4 acetylation specifically on T3-response genes. Most importantly, we show that individual T3-response genes have distinct co-regulator requirements, the T3-dependent co-repressor-to-coactivator switch being gene-specific for both co-regulator categories
Implication of bax in Xenopus laevis tail regression at metamorphosis.
Apoptosis is fundamental to normal vertebrate development. A dramatic example of postembryonic development involving apoptosis is tail regression during amphibian metamorphosis. Earlier studies led us to propose a functional role for the pro-apoptotic protein Bax in tadpole tail regression. However, its physiological relevance has never been analyzed. We have now cloned a cDNA encoding Xenopus laevis bax (xlbax) and used in vivo gene transfer in tail muscle to analyze the effects of xlbax overexpression. Furthermore, by using an antisense strategy in a similar experimental paradigm, xlbax antisense mRNA was shown to block the apoptotic effects of xlbax and protect against apoptosis in metamorphosing tadpoles. Our results suggest that xlbax is a regulator of muscle fiber death in the regressing tail during metamorphosis. Copyright (c) 2004 Wiley-Liss, Inc
Thyroid status co-regulates thyroid hormone receptor and co-modulator genes specifically in the hypothalamus.
Regulation of Thyrotropin Releasing Hormone (TRH) transcription in the hypothalamus represents the central control point of thyroid function. To examine the expression of potential TRH regulatory components, we simultaneously amplified, by semi-quantitative multiplex PCR system, nine key genes from < or = 100 ng total RNA from two brain areas (hypothalamus and cortex) under different thyroid states. Expression of TR1 and TR2 isoforms, key elements in TRH regulation, was modified by thyroid status in the hypothalamus but not in the cortex. Similarly, hypothyroidism increased specifically hypothalamic levels of three co-modulator genes. This study provides the first demonstration of tissue specific co-regulation of a set of genes by thyroid status within a defined brain area
[Transcriptional repression of the TRH gene]
The synthesis and secretion of thyroid hormones (TH: T3, T4) must be strictly regulated. TH act on their own production via a negative feedback system. The synthesis of thyrotropin-releasing hormone (TRH), produced in the hypothalamus, and thyrotropin (TSH) in the pituitary is inhibited at the transcriptional level by TH. TRH and TSH stimulate production of TH. An outstanding, still open, question is the molecular basis of T3-dependent transcription repression of TRH and TSH genes. However, some regulatory components have been identified, with the b-TH receptor (TRb) playing a specific regulatory role (versus TRa) in the negative feedback effects of T3 on production of TRH and TSH. Moreover, the N-terminus of TRb is known to be a key element in this regulation. A hypothesis to explain this isoform specificity could be that TRb and TRa interact differentially with transcriptional comodulators. Thus, it is critical to characterize these comodulators and to analyse their contribution to the transcription regulation of TRH
Implication of bax in Xenopus laevis tail regression at metamorphosis.
Apoptosis is fundamental to normal vertebrate development. A dramatic example of postembryonic development involving apoptosis is tail regression during amphibian metamorphosis. Earlier studies led us to propose a functional role for the pro-apoptotic protein Bax in tadpole tail regression. However, its physiological relevance has never been analyzed. We have now cloned a cDNA encoding Xenopus laevis bax (xlbax) and used in vivo gene transfer in tail muscle to analyze the effects of xlbax overexpression. Furthermore, by using an antisense strategy in a similar experimental paradigm, xlbax antisense mRNA was shown to block the apoptotic effects of xlbax and protect against apoptosis in metamorphosing tadpoles. Our results suggest that xlbax is a regulator of muscle fiber death in the regressing tail during metamorphosis. Copyright (c) 2004 Wiley-Liss, Inc
