1,008 research outputs found

    Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of<i>Arabidopsis thaliana</i>plants

    Get PDF
    Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L-1, inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca2+]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K+ efflux and Ca2+ influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd3+-sensitive Ca2+ influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca2+]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate. Significance Statement Silver nanoparticles are known antimicrobial and antifungal agents, and also affect diverse physiological functions in animal cells, but their intracellular effects on plant cells is largely unexplored. Here we show that silver nanoparticles induce stress signalling mediated by Ca2+ and reactive oxygen species, affect plasma membrane conductance and oxidise ascorbic acid

    Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells

    Get PDF
    Free oxygen radicals are an irrefutable component of life, underlying important biochemical and physiological phenomena in animals. Here it is shown that free oxygen radicals activate plasma membrane Ca²⁺- and K⁺-permeable conductances in Arabidopsis root cell protoplasts, mediating Ca²⁺ influx and K⁺ efflux, respectively. Free oxygen radicals generate increases in cytosolic Ca²⁺ mediated by a novel population of nonselective cation channels that differ in selectivity and pharmacology from those involved in toxic Na⁺ influx. Analysis of the free oxygen radical-activated K⁺ conductance showed its similarity to the Arabidopsis root K⁺ outward rectifier. Significantly larger channel activation was found in cells responsible for perceiving environmental signals and undergoing elongation. Quenching root free oxygen radicals inhibited root elongation, confirming the role of radical-activated Ca²⁺ influx in cell growth. Net free oxygen radical-stimulated Ca²⁺ influx and K⁺ efflux were observed in root cells of monocots, dicots, C3 and C4 plants, suggesting conserved mechanisms and functions. In conclusion, two functions for free oxygen radical cation channel activation are proposed: initialization/amplification of stress signals and control of cell elongation in root growth.Vadim Demidchik, Sergey N. Shabala, Katherine B. Coutts, Mark A. Tester and Julia M. Davie

    An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development

    Get PDF
    FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development and germination, and pollen development, release and viability are all affected. Spectrometry of mutant versus wild-type flowers shows altered levels of a glycosylated flavonol whereas anthocyanin seems unlikely to be the substrate as previously speculated. Thus, as well as adding FFT to the incompletely described flavonoid transport network, it is found that correct reproductive development in Arabidopsis is perturbed when this particular transporter is missing

    Complex preparation of patients with recurrent implantation failure for the transfer of good quality embryos in ivf-et cycles

    Get PDF
    The purpose of the study is to evaluate the effectiveness of the proposed method of complex preparation of patients with RIF with the restoration of the profile of vaginal microbiota and the functions of the main systems of sanogenesis with the help of adjuvants before the next attempt to transfer vitrified / warmed embryos of good quality in segmented IVF-ET cycles. Material and methods. 68 women of reproductive age with infertility and RIF, who were repeatedly but unsuccessfully treated in IVF-ET cycles with transfer of good quality embryos, and 32 fertile control women were comprehensively examined. A method of preparing patients with RIF for IVF-ET was developed, which included extended profiling of the vaginal microbiome, combined use of oral and vaginal antibacterial drugs against the background of the use of enzyme agents and antibiotic-resistant probiotics, as well as progestogens, melatonin, vitamin D, adjuvants for the correction of oxidative, nitrosative stress and restoration of endothelial function. The patients of the group with RNI were divided into 2 groups: 35 women who were prepared for the next attempt of IVF-ET according to the proposed method, and 33 patients who received the standard method of preparation. The microbiological, laboratory and clinical results of the training were evaluated. The results. Improvement of the composition of the vaginal microbiota, hormonal, nitrosative and oxidative status, functional activity of the endothelium of patients with RIF according to the proposed method of preparation for IVF-ET led to an increase in the frequency of clinical pregnancy by 2.26 times (45.71% vs. 21.21 %; OR 3.1278 [95% CI 1.0759-9.0930], p&lt;0.04) and termination of induced pregnancy by delivery 3.30 times (40.00 % vs. 12.12 %; OR 4.8333 [95% CI 1.3916-16.7870], p&lt;0.02). Conclusions. The proposed complex method of preparing patients with RIF before IVF-ET is effective and can be recommended for use in clinical practice

    Effect of supplemental Ca2+ on NaCl-stressed castor plants (Ricinus communis L.)

    Get PDF
    Greenhouse experiments were conducted to assess the effects of supplemental Ca2+ in salinised soil on germination and plant growth response of castor plant (Ricinus communis L. Var. Avani-31, Euphorbiaceae). NaCl amounting to 390 g was thoroughly mixed with soil of seven lots, of 100 kg each, to give electrical conductivity of 4.1 dS m–1. Further, Ca(NO3)2 × 4H20 to the quantity of 97.5, 195, 292.5, 390, 487.5, and 585 g was separately mixed with soil of six lots to give 1:0.25, 1:0.50, 1:0.75, 1:1, 1:1.25, and 1:1.50 Na+/Ca2+ ratios, respectively. The soil of the seventh lot contained only NaCl and its Na+/Ca2+ ratio was 1:0. Soil without addition of NaCl and Ca (NO3)2 × 4H20 served as control, with a 0:0 Na+/Ca2+ ratio. Salinity significantly retarded seed germination and plant growth, but the deleterious effects of NaCl on seed germination were ameliorated and plant growth was restored with Ca2+ supply at the critical level (1:0.25 Na+/Ca2+ ratio) to salinised soil. Supply of Ca2+ above the critical level further retarded seed germination and plant growth due to the increased soil salinity. Salt stress reduced N, P, K+ and Ca2+ content in plant tissues, but these nutrients were restored by addition of Ca2+ at the critical level to saline soil. In contrast, Na+ content in plant tissues significantly increased in response to salinity, but significantly decreased with increasing Ca2+ supply to saline soil. The results are discussed in terms of the beneficial effects of Ca2+ supply on the plant growth of Ricinus communis grown under saline conditions

    Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate

    Get PDF
    AbstractGrowth and physiological activities of barley (Hordeum vulgare L. cv. Gustoe) grown in soil cultures were evaluated to recognize the ameliorative role of salicylic acid (SA) and KNO3 against the negative effects of salt and water deficit stresses. Barley plants were subjected to three levels of NaCl (50, 100 and 150mM), three levels of water stress (80%, 70% and 50% of the soil water content (SWC) and the combination of 150mM NaCl+50μM SA, 150mM NaCl+10mM KNO3, 50% SWC+50μM SA and 50% SWC+10mM KNO3 for two weeks. Salt and water deficit stresses reduced the shoot growth, leaf photosynthetic pigments, K+ contents and provoked oxidative stress in leaves confirmed by considerable changes in soluble carbohydrate, proline, malondialdehyde (MDA), total phenolic compounds, antioxidant activity and Na+ contents. Leaf soluble protein of salt and water deficit treated plants was unaffected. The Na+/K+ ratio increased with increasing salt and water deficit treated plants. Application of 50μM SA or 10mM KNO3 to150mM NaCl and/or 50% SWC treated plants improved these attributes under salt and water stresses. Soluble carbohydrates in stressed plants may have a significant role in osmotic adjustment. It can be concluded that the addition of SA or KNO3 can ameliorate the oxidative stress in barley stressed plants. This ameliorative effect might be maintained through low MDA contents and decreased Na+/K+ ratio in leaves. This study also provided evidence for the ability of barley cultivation in salt and water deficit soils due to its capacity for osmotic adjustment

    Conformation ability test of human, rabbit and bovine plasminogens and their specific interaction with streptokinase

    Get PDF
    Human, rabbit and bovine plasminogens, having different sensitivity to streptokinase-activating action, differ, according to spectrophotometric titration, tryptophan fluorescence and circular dichroism spectroscopy, in the state of tyrosine and tryptophan residues, and in secondary and tertiary structures. Human plasminogen-streptokinase equimolar complex formation (according to gel chromatography) is accompanied by a differential ultraviolet spectrum. Difference spectroscopy is a convenient and adequate means of studying the formation of the said complexes. Streptokinase-human plasminogen complex formation is not hindered by partial substitution of water (20%) with ethanol or dimethylsulphoxide or by addition of O.OOIMsodium dodecylsulphate. The complex is not formed in 6 M urea, in solution, at pH < 2.0 or ~12.0-13.0, or with bovine plasminogen. Circular dichroism and tryptophan fluorescence spectral pattern changes during streptokinase-plasminogen complexformation enable us to conclude that streptokinase secondary and tertiary structures undergo certain rearrangements in theframework of the complex, while tryptophan-containing sites of the molecule are not drastically changed. The data obtained enable us to presuppose formation of streptokinase-rabbit plasminogen complexes which differ from human plasminogen complexes with streptokinase
    corecore