445 research outputs found
Water in HD 209458b's atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit
The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5,
5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space
Telescope. We detail here the procedures we adopted to correct for the
systematic trends present in the IRAC data. The light curves were fitted
including limb darkening effects and fitted using Markov Chain Monte Carlo and
prayer-bead Monte Carlo techniques, finding almost identical results. The final
depth measurements obtained by a combined Markov Chain Monte Carlo fit are at
3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +-
0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %.
Our results clearly indicate the presence of water in the planetary atmosphere.
Our broad band photometric measurements with IRAC prevent us from determining
the additional presence of other other molecules such as CO, CO2 and methane
for which spectroscopy is needed. While water vapour with a mixing ratio of
10^-4-10^-3 combined with thermal profiles retrieved from the day-side may
provide a very good fit to our observations, this data set alone is unable to
resolve completely the degeneracy between water abundance and atmospheric
thermal profile.Comment: 14 pages, 6 tables, 10 figures, Accepted for publication in MNRA
The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres
We are now on a clear trajectory for improvements in exoplanet observations
that will revolutionize our ability to characterize their atmospheric
structure, composition, and circulation, from gas giants to rocky planets.
However, exoplanet atmospheric models capable of interpreting the upcoming
observations are often limited by insufficiencies in the laboratory and
theoretical data that serve as critical inputs to atmospheric physical and
chemical tools. Here we provide an up-to-date and condensed description of
areas where laboratory and/or ab initio investigations could fill critical gaps
in our ability to model exoplanet atmospheric opacities, clouds, and chemistry,
building off a larger 2016 white paper, and endorsed by the NAS Exoplanet
Science Strategy report. Now is the ideal time for progress in these areas, but
this progress requires better access to, understanding of, and training in the
production of spectroscopic data as well as a better insight into chemical
reaction kinetics both thermal and radiation-induced at a broad range of
temperatures. Given that most published efforts have emphasized relatively
Earth-like conditions, we can expect significant and enlightening discoveries
as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape
Biocatalytic Synthesis of Polymers of Precisely Defined Structures
The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure
Provision of Clinical Pharmacist Services for Individuals With Chronic Hepatitis C Viral Infection
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109934/1/phar1512.pd
Digital-analog hybrid matrix multiplication processor for optical neural networks
The computational demands of modern AI have spurred interest in optical
neural networks (ONNs) which offer the potential benefits of increased speed
and lower power consumption. However, current ONNs face various challenges,most
significantly a limited calculation precision (typically around 4 bits) and the
requirement for high-resolution signal format converters (digital-to-analogue
conversions (DACs) and analogue-to-digital conversions (ADCs)). These
challenges are inherent to their analog computing nature and pose significant
obstacles in practical implementation. Here, we propose a digital-analog hybrid
optical computing architecture for ONNs, which utilizes digital optical inputs
in the form of binary words. By introducing the logic levels and decisions
based on thresholding, the calculation precision can be significantly enhanced.
The DACs for input data can be removed and the resolution of the ADCs can be
greatly reduced. This can increase the operating speed at a high calculation
precision and facilitate the compatibility with microelectronics. To validate
our approach, we have fabricated a proof-of-concept photonic chip and built up
a hybrid optical processor (HOP) system for neural network applications. We
have demonstrated an unprecedented 16-bit calculation precision for
high-definition image processing, with a pixel error rate (PER) as low as
at an signal-to-noise ratio (SNR) of 18.2 dB. We have also
implemented a convolutional neural network for handwritten digit recognition
that shows the same accuracy as the one achieved by a desktop computer. The
concept of the digital-analog hybrid optical computing architecture offers a
methodology that could potentially be applied to various ONN implementations
and may intrigue new research into efficient and accurate domain-specific
optical computing architectures for neural networks
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Diagnostic performance of pre-procedure endoscopic biopsies in predicting the histology of gastric lesions undergoing ESD
Gastric cancer remains one of the most lethal malignancies worldwide. Endoscopic submucosal dissection (ESD), a minimally invasive procedure that has become the gold standard for early-stage gastric cancer management, demonstrates both diagnostic and therapeutic utility. With advancing ESD techniques and expanded clinical applications, discrepancies between preoperative biopsy findings and post-resection pathology evaluations have become increasingly evident in clinical practice. This retrospective analysis of 113 ESD-treated patients employed systematic comparative methods to quantify diagnostic discrepancies between initial biopsy interpretations and definitive histopathological assessments, while identifying critical contributing factors. Multivariate analysis revealed three independent predictors of histopathological discrepancies including lesion location, lesions exhibiting type IIc morphology and elevated Kyoto Gastric Cancer Risk Scores. These findings provide robust statistical evidence for refining preoperative risk stratification protocols, ultimately optimizing clinical outcomes in precision endoscopy
CSF metabolites associate with CSF tau and improve prediction of Alzheimer's disease status
Introduction: Cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease (AD), yet much is unknown about AD-associated changes in tau metabolism and tau tangle etiology. Methods: We assessed the variation of t-tau and p-tau explained by 38 previously identified CSF metabolites using linear regression models in middle-age controls from the Wisconsin Alzheimer's Disease Research Center, and predicted AD/mild cognitive impairment (MCI) versus an independent set of older controls using metabolites selected by the least absolute shrinkage and selection operator (LASSO). Results: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau and p-tau, respectively. Of these, seven LASSO-selected metabolites improved the prediction ability of AD/MCI versus older controls (area under the curve score increased from 0.92 to 0.97 and 0.78 to 0.93) compared to the base model. Discussion: These tau-correlated CSF metabolites increase AD/MCI prediction accuracy and may provide insight into tau tangle etiology
Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier
High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments
- …
