317 research outputs found

    Facile Synthesis of Enzyme-Embedded Metal–Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent

    Get PDF
    In situ immobilization of enzyme into metal–organic frameworks (MOFs) is performed through a one-step and facile method. Candida antarctica lipase B (CalB) is directly embedded in zeolitic imidazolate framework (ZIF)-8 by simply mixing an aqueous solution of 2-methylimidazole and zinc nitrate hexahydrate [Zn(NO3)2⋅6H2O] containing CalB at room temperature. Due to the intrinsic micropores of ZIF-8, the obtained CalB@ZIF composite is successfully applied in size-selective transesterification reaction in organic solvent. CalB@ZIF not only shows much higher catalytic activity but also exhibits higher thermal stability than free CalB. Besides, the robust ZIF-8 shell also offers the hybrid composites excellent reusability.</p

    Biocatalytic Synthesis of Polymers of Precisely Defined Structures

    Get PDF
    The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure

    Effects of acute exercise and learning strategy implementation on memory function

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background and Objectives: Long-term potentiation (LTP), the functional connectivity among neurons, is considered a mechanism of episodic memory. Both acute exercise and learning are thought to influence memory via an LTP-related mechanism. Limited research has evaluated the individual and combined effects of acute exercise and learning strategy implementation (e.g., 3-R technique, cue-integration) on memory, which was the purpose of this study. Materials and Methods: For Experiment 1, participants (n = 80; Mage = 20.9 years) were randomized into one of four experimental groups, including Exercise + Learning (E + L), Learning Only (L), Exercise Only (E), and Control Group (C; no exercise and no learning strategy implementation). The exercise stimulus involved an acute 15-min bout of lower-intensity (60% of heart rate max) walking exercise and the learning strategy involved the implementation of the 3-R technique. Experiment 2 (n = 77; Mage = 21.1 years) replicated Experiment 1 but addressed limitations (e.g., exposure level of the memory task) from Experiment 1 and employed a higher-intensity bout of exercise (77% of heart rate max). Experiment 3 (n = 80; Mage = 21.0 years) evaluated these same four experimental conditions but employed a cue-integration learning strategy and a moderate-intensity bout of acute exercise (64% of heart rate max). Results: These three experiments demonstrate that both learning techniques were effective in enhancing memory and we also provided evidence of a main effect for acute exercise (Experiment 3). However, we did not observe consistent evidence of a learning by exercise interaction effect. Conclusions: We demonstrate that both acute exercise and different learning techniques are effective in enhancing long-term memory function

    Enzymes Immobilized on Carbon Nitride (C<sub>3</sub>N<sub>4</sub>) Cooperating with Metal Nanoparticles for Cascade Catalysis

    Get PDF
    The exploration of effective platforms for immobilizing chemo- and biocatalysts to develop biohybrid catalysts is an attractive subject of practical interest. In this work, carbon nitride (C3N4) is used for the first time as a platform for the immobilization of metal catalyst (Pd nanoparticles) and biocatalyst (Candida antarctica lipase B, CalB) in a facile manner to prepare biohybrid catalyst. The optimal biohybrid catalyst inherits the intrinsic performance of both Pd nanoparticles and CalB, and shows high activity in the one-pot cascade reaction converting benzaldehyde to benzyl hexanoate at room temperature. With this proof of concept, it is expected that C3N4 can be utilized for immobilizing more types of chemo- and biocatalysts for perspective applications.</p

    Design and Control of a Ferromagnetic Coded Micro-Carrier Biochip Sensor for Multiplex Detection of Antibodies

    Get PDF
    This paper describes a method for producing a novel type of ferromagnetic coded micro-carrier. The ferromagnetic coded micro-carriers are about 200 μm in length, 200 μm in width and 50 μm in thickness, and contain eight code elements with two distinguishable codes (hollow and solid), allowing for 28 unique codes. The code shapes include rectangle, circle, etc. Differently shaped coded micro-carriers could carry different antigens for detection of its complementary antibody. These many shapes of coded micro-carriers would be used simultaneously allowing us to make multiple detections for different antibodies at the same time. A molding process is applied for fabrication of the ferromagnetically coded micro-carriers where Fe material (Fe powder mixed with binder) is shaped in many tiny molds to produce the coded shapes used for identification of the bio-molecules. Magnetic force is used to control the movement and location of the ferromagnetic coded micro-carriers to prevent the loss during the hybridization process. The results of image process and analysis system testing are satisfactory. The results of our micro-carrier detection system for two sets of R and B color analysis are proportional to those obtained from ELISA antibody detection

    Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction

    Get PDF
    The practical application of splitting water to generate hydrogen is to a large extent hindered by an oxygen evolution reaction (OER) process. Electrocatalysts with low-cost, high activity, and durability are essential for the low kinetic threshold of the OER. Despite the high active performances of noble metal compound electrocatalysts like IrO2 and RuO2, they are heavily restricted by the high cost and scarcity of noble metal elements. In this context, noble-metal-free electrocatalysts have acquired increasing significance in recent years. So far, a broad spectrum of noble-metal-free electrocatalysts has been developed for improved OER performance. In this review, three types of electrolysis and some evaluation criteria are introduced, followed by recent progress in designing and synthesizing noble-metal-free alkaline OER electrocatalysts, with the classification of metal oxides/(oxy)hydroxides, carbon-based materials, and metal/carbon hybrids. Finally, perspectives are also provided on the future development of the alkaline OER on active sites and stability of electrocatalysts

    Baseline quantitative hepatitis B core antibody titre alone strongly predicts HBeAg seroconversion across chronic hepatitis B patients treated with peginterferon or nucleos(t)ide analogues

    Full text link
    OBJECTIVE: The investigation regarding the clinical significance of quantitative hepatitis B core antibody (anti-HBc) during chronic hepatitis B (CHB) treatment is limited. The aim of this study was to determine the performance of anti-HBc as a predictor for hepatitis B e antigen (HBeAg) seroconversion in HBeAg-positive CHB patients treated with peginterferon (Peg-IFN) or nucleos(t)ide analogues (NUCs), respectively. DESIGN: This was a retrospective cohort study consisting of 231 and 560 patients enrolled in two phase IV, multicentre, randomised, controlled trials treated with Peg-IFN or NUC-based therapy for up to 2 years, respectively. Quantitative anti-HBc evaluation was conducted for all the available samples in the two trials by using a newly developed double-sandwich anti-HBc immunoassay. RESULTS: At the end of trials, 99 (42.9%) and 137 (24.5%) patients achieved HBeAg seroconversion in the Peg-IFN and NUC cohorts, respectively. We defined 4.4 log(10) IU/mL, with a maximum sum of sensitivity and specificity, as the optimal cut-off value of baseline anti-HBc level to predict HBeAg seroconversion for both Peg-IFN and NUC. Patients with baseline anti-HBc ≥4.4 log(10) IU/mL and baseline HBV DNA <9 log(10) copies/mL had 65.8% (50/76) and 37.1% (52/140) rates of HBeAg seroconversion in the Peg-IFN and NUC cohorts, respectively. In pooled analysis, other than treatment strategy, the baseline anti-HBc level was the best independent predictor for HBeAg seroconversion (OR 2.178; 95% CI 1.577 to 3.009; p<0.001). CONCLUSIONS: Baseline anti-HBc titre is a useful predictor of Peg-IFN and NUC therapy efficacy in HBeAg-positive CHB patients, which could be used for optimising the antiviral therapy of CHB
    corecore