2,015 research outputs found
Untethered micro-robotic coding of three-dimensional material composition
Complex functional materials with three-dimensional micro- or nano-scale dynamic compositional features are prevalent in nature. However, the generation of three-dimensional functional materials composed of both soft and rigid microstructures, each programmed by shape and composition, is still an unsolved challenge. Herein, we describe a method to code complex materials in three-dimensions with tunable structural, morphological, and chemical features using an untethered magnetic micro-robot remotely controlled by magnetic fields. This strategy allows the micro-robot to be introduced to arbitrary microfluidic environments for remote two- and three-dimensional manipulation. We demonstrate the coding of soft hydrogels, rigid copper bars, polystyrene beads, and silicon chiplets into three-dimensional heterogeneous structures. We also use coded microstructures for bottom-up tissue engineering by generating cell-encapsulating constructs
A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis
Statistical Modeling of Single Target Cell Encapsulation
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.Wallace H. Coulter Foundation (Young Investigator in Bioengineering Award)National Institutes of Health (U.S.) (Grant R01AI081534)National Institutes of Health (U.S.) (Grant R21AI087107
Active learning: Let's make them a song
Active learning strategy has an important role in helping students gain twenty-first-century skills such as creativity, collaboration, responsibility and effective communication. By being more active and free in classrooms, students take their own learning responsibility. In this study, we wanted to see the active learning strategy through students' eyes. Thus, we asked for their views after the completion of the activity. Consequently, students stated they had a lot of fun, felt happy and proud. They also indicated that they developed their imagination and creativity. They also found the opportunity to practice speaking English and discovered how to reach a consensus as a group. In sum, the activity we adopted active learning strategy provided them a better learning environmen
Attention deficit hyperactivity symptoms predict problematic mobile phone use
Attention-deficit-hyperactivity disorder (ADHD) is the most commonly diagnosed childhood disorder characterised by inattention, hyperactivity/impulsivity, or both. Some of the key traits of ADHD have previously been linked to addictive and problematic behaviours. The aim of the present study was to examine the relationship between problematic mobile phone use, smartphone
addiction risk and ADHD symptoms in an adult population. A sample of 273 healthy adult volunteers completed the Adult
ADHD Self-Report Scale (ASRS), the Mobile Phone Problem Usage Scale (MPPUS), and the Smartphone Addiction Scale
(SAS). A significant positive correlation was found between the ASRS and both scales. More specifically, inattention symptoms
and age predicted smartphone addiction risk and problematic mobile phone use. Our results suggest that there is a positive
relationship between ADHD traits and problematic mobile phone use. In particular, younger adults with higher level of inattention symptoms could be at higher risk of developing smartphone addiction. The implication of our findings for theoretical
frameworks of problematic mobile phone use and clinical practice are discussed
Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: Role of amount and direction of uni-axial pre-strain
Automotive industries are very much interested in formability of different pre-strained aluminum alloy sheets in the context of multistage stamping to fabricate complex components. In the present work, different uni-axial pre-strains of 6.4% and 12.2% were induced in AA5754-O aluminum alloy both along rolling direction (RD) and transverse direction (TD). The true stress-strain response, limiting dome height (LDH) and strain based forming limit diagram (ε-FLD) of as received and all pre-strained materials were evaluated experimentally. The anisotropy constitutive material model was developed using the Yld96 plasticity theory in-conjunction with the Hollomon isotropic hardening law to predict the yield strength evolution of the pre-strained materials. Also, it was found that the limiting strains in ε-FLD shifted significantly depending on the amount and direction of uni-axial pre-strain. Hence, the limiting strains of the as-received materials were transposed into stress space to estimate the stress based forming limit diagram (σ-FLD) using the anisotropy constitutive material model. Further, the dynamic shifts of ε-FLDs of four different pre-strained materials were predicted by successfully decoupling the σ-FLD of as-received materials within root mean square error of 0.008. Finite element models of both uni-axial pre-straining and subsequent LDH tests were developed, and the forming behavior of the pre-strained materials were predicted implementing the Yld96 plasticity model and estimated σ-FLD. It was found that LDH was significantly influenced by the amount of pre-strain, and the maximum thinning location shifted close to pole in the case of 12.2% pre-strained materials. However, the effect of uni-axial pre-strain direction on both LDH and maximum thinning location in AA5754-O material was very negligible
Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents
Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2 reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2 directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2 and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values
Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients
Background
CD4+ T-lymphocyte count (CD4 count) is a standard method used to monitor HIV-infected patients during anti-retroviral therapy (ART). The World Health Organization (WHO) has pointed out or recommended that a handheld, point-of-care, reliable, and affordable CD4 count platform is urgently needed in resource-scarce settings.
Methods
HIV-infected patient blood samples were tested at the point-of-care using a portable and label-free microchip CD4 count platform that we have developed. A total of 130 HIV-infected patient samples were collected that included 16 de-identified left over blood samples from Brigham and Women's Hospital (BWH), and 114 left over samples from Muhimbili University of Health and Allied Sciences (MUHAS) enrolled in the HIV and AIDS care and treatment centers in the City of Dar es Salaam, Tanzania. The two data groups from BWH and MUHAS were analyzed and compared to the commonly accepted CD4 count reference method (FACSCalibur system).
Results
The portable, battery operated and microscope-free microchip platform developed in our laboratory (BWH) showed significant correlation in CD4 counts compared with FACSCalibur system both at BWH (r = 0.94, p<0.01) and MUHAS (r = 0.49, p<0.01), which was supported by the Bland-Altman methods comparison analysis. The device rapidly produced CD4 count within 10 minutes using an in-house developed automated cell counting program.
Conclusions
We obtained CD4 counts of HIV-infected patients using a portable platform which is an inexpensive (<$1 material cost) and disposable microchip that uses whole blood sample (<10 µl) without any pre-processing. The system operates without the need for antibody-based fluorescent labeling and expensive fluorescent illumination and microscope setup. This portable CD4 count platform displays agreement with the FACSCalibur results and has the potential to expand access to HIV and AIDS monitoring using fingerprick volume of whole blood and helping people who suffer from HIV and AIDS in resource-limited settings.Wallace H. Coulter Foundation (Young Investigation Award in Bioengineering Award)National Institutes of Health (U.S.) (NIH R01AI081534)National Institutes of Health (U.S.) (NIH R21AI087107)National Institutes of Health (U.S.) (NIH grant RR016482)National Institutes of Health (U.S.) (grant AI060354)National Institutes of Health (U.S.) (NIH Fogarty Fellowship
- …
