789 research outputs found
Magnetic field splitting of the spin-resonance in CeCoIn5
Neutron scattering in strong magnetic fields is used to show the
spin-resonance in superconducting CeCoIn5 (Tc=2.3 K) is a doublet. The
underdamped resonance (\hbar \Gamma=0.069 \pm 0.019 meV) Zeeman splits into two
modes at E_{\pm}=\hbar \Omega_{0}\pm g\mu_{B} \mu_{0}H with g=0.96 \pm 0.05. A
linear extrapolation of the lower peak reaches zero energy at 11.2 \pm 0.5 T,
near the critical field for the incommensurate "Q-phase" indicating that the
Q-phase is a bose condensate of spin excitons.Comment: 5 pages, 4 figure
Single polaron properties of the breathing-mode Hamiltonian
We investigate numerically various properties of the one-dimensional (1D)
breathing-mode polaron. We use an extension of a variational scheme to compute
the energies and wave-functions of the two lowest-energy eigenstates for any
momentum, as well as a scheme to compute directly the polaron Greens function.
We contrast these results with results for the 1D Holstein polaron. In
particular, we find that the crossover from a large to a small polaron is
significantly sharper. Unlike for the Holstein model, at moderate and large
couplings the breathing-mode polaron dispersion has non-monotonic dependence on
the polaron momentum k. Neither of these aspects is revealed by a previous
study based on the self-consistent Born approximation
Teleoperation experiments with a Utah/MIT hand and a VPL DataGlove
A teleoperation system capable of controlling a Utah/MIT Dextrous Hand using a VPL DataGlove as a master is presented. Additionally the system is capable of running the dextrous hand in robotic (autonomous) mode as new programs are developed. The software and hardware architecture used is presented and the experiments performed are described. The communication and calibration issues involved are analyzed and applications to the analysis and development of automated dextrous manipulations are investigated
Fast linear algebra is stable
In an earlier paper, we showed that a large class of fast recursive matrix
multiplication algorithms is stable in a normwise sense, and that in fact if
multiplication of -by- matrices can be done by any algorithm in
operations for any , then it can be done
stably in operations for any . Here we extend
this result to show that essentially all standard linear algebra operations,
including LU decomposition, QR decomposition, linear equation solving, matrix
inversion, solving least squares problems, (generalized) eigenvalue problems
and the singular value decomposition can also be done stably (in a normwise
sense) in operations.Comment: 26 pages; final version; to appear in Numerische Mathemati
Dynamic Computation of Network Statistics via Updating Schema
In this paper we derive an updating scheme for calculating some important
network statistics such as degree, clustering coefficient, etc., aiming at
reduce the amount of computation needed to track the evolving behavior of large
networks; and more importantly, to provide efficient methods for potential use
of modeling the evolution of networks. Using the updating scheme, the network
statistics can be computed and updated easily and much faster than
re-calculating each time for large evolving networks. The update formula can
also be used to determine which edge/node will lead to the extremal change of
network statistics, providing a way of predicting or designing evolution rule
of networks.Comment: 17 pages, 6 figure
Eigenvalue Estimation of Differential Operators
We demonstrate how linear differential operators could be emulated by a
quantum processor, should one ever be built, using the Abrams-Lloyd algorithm.
Given a linear differential operator of order 2S, acting on functions
psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to
estimate a low order eigenvalue to accuracy Theta(1/N^2) is
Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c)
gate operations, where N is the number of points to which each argument is
discretized, nu and c are implementation dependent constants of O(1). Optimal
classical methods require Theta(N^D) bits and Omega(N^D) gate operations to
perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby
leads to exponential reduction in memory and polynomial reduction in gate
operations, provided the domain has sufficiently large dimension D >
2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy
estimation of two or more particles can in principle be performed with fewer
quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief
analysis of convergenc
Approximating Spectral Impact of Structural Perturbations in Large Networks
Determining the effect of structural perturbations on the eigenvalue spectra
of networks is an important problem because the spectra characterize not only
their topological structures, but also their dynamical behavior, such as
synchronization and cascading processes on networks. Here we develop a theory
for estimating the change of the largest eigenvalue of the adjacency matrix or
the extreme eigenvalues of the graph Laplacian when small but arbitrary set of
links are added or removed from the network. We demonstrate the effectiveness
of our approximation schemes using both real and artificial networks, showing
in particular that we can accurately obtain the spectral ranking of small
subgraphs. We also propose a local iterative scheme which computes the relative
ranking of a subgraph using only the connectivity information of its neighbors
within a few links. Our results may not only contribute to our theoretical
understanding of dynamical processes on networks, but also lead to practical
applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table
- …
