337 research outputs found
Allegory, Gendered Allegory, and Paradise Lost
In Paradise Lost, John Milton's allegorical personifications, Sin and Death exist in a peculiar ontological space. They are not angels like Raphael or Abidel, but they are not human like our "Grand Parents," Adam and Eve. Their existence in the poem has confused and troubled scholars for centuries, but Sin and Death are more than a rhetorical anomaly. In my first chapter I analyze the ontological status and purpose of these characters based on their effect on the poem's internal cosmology. From that analysis, I continue my discussion by focusing on Sin and her gender, which, based on her placement in the narrative and her troubling characterization, has a direct effect on how readers interpret the only other woman in the poem, Eve.No embargoAcademic Major: Englis
Tunneling Conductance Between Parallel Two Dimensional Electron Systems
We derive and evaluate expressions for the low temperature {\it dc}
equilibrium tunneling conductance between parallel two-dimensional electron
systems. Our theory is based on a linear-response formalism and on
impurity-averaged perturbation theory. The disorder broadening of features in
the dependence of tunneling conductance on sheet densities and in-plane
magnetic field strengths is influenced both by the finite lifetime of electrons
within the wells and by non-momentum-conserving tunneling events. Disorder
vertex corrections are important only for weak in-plane magnetic fields and
strong interwell impurity-potential correlations. We comment on the basis of
our results on the possibility of using tunneling measurements to determine the
lifetime of electrons in the quantum wells.Comment: 14 pages, 5 Fig. not included, revtex, IUcm92-00
Experimental and numerical investigations of a thermoplastic composite (carbon/PPS) thermoforming
For lightweight structural components, continuous fibre-reinforced thermoplastic composites have demonstrated success in aerospace and defence applications. Their mechanical behaviour is a result of the possible sliding and interactions between the fibres, but the complex deformation mechanisms of this sheet are a main problem in the practical thermoforming process. In this context, a large experimental work was developed to analyse the behaviour of a 5-harness satin weave carbon–polyphenylenesulfide (PPS) composite. Firstly, we started this work with a microscope observation of the sheet cross section and a thermo-gravimetric analysis of carbon/PPS to understand the thermal condition in the forming process, the reinforcement (fibre and yarn) geometry and dimensions and the textile reinforcement architectures. Secondly, in high temperature conditions (at 320�C), static uniaxial and biaxial tensile tests were carried out. During these mechanical tests, we used a digital image stereo-correlation technique to get full field displacement measurements and an infrared camera to measure the temperature in the surface of sample.
The results of the experimental investigation were used with the commercial software ABAQUS to develop a numerical model of stamp thermoforming operation. The stamp thermoforming part was developed using a hemispherical punch and compared with an experimental result. In the deformed part obtained by thermoforming of the carbon/PPS sheet, we analysed the instability phenomena such as wrinkling
Mesoscopic effects in tunneling between parallel quantum wires
We consider a phase-coherent system of two parallel quantum wires that are
coupled via a tunneling barrier of finite length. The usual perturbative
treatment of tunneling fails in this case, even in the diffusive limit, once
the length L of the coupling region exceeds a characteristic length scale L_t
set by tunneling. Exact solution of the scattering problem posed by the
extended tunneling barrier allows us to compute tunneling conductances as a
function of applied voltage and magnetic field. We take into account charging
effects in the quantum wires due to applied voltages and find that these are
important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to
appear in Phys. Rev.
Lifetime of Two-Dimensional Electrons Measured by Tunneling Spectroscopy
For electrons tunneling between parallel two-dimensional electron systems,
conservation of in-plane momentum produces sharply resonant current-voltage
characteristics and provides a uniquely sensitive probe of the underlying
electronic spectral functions. We report here the application of this technique
to accurate measurements of the temperature dependence of the electron-electron
scattering rate in clean two-dimensional systems. Our results are in
qualitative agreement with existing calculations.Comment: file in REVTEX format produces 11 pages, 3 figures available from
[email protected]
Tunneling Between Two-Dimensional Electron Gases in a Strong Magnetic Field
We have measured the tunneling between two two-dimensional electron gases at
high magnetic fields , when the carrier densities of the two electron layers
are matched. For filling factors , there is a gap in the current-voltage
characteristics centered about , followed by a tunneling peak at ~mV. Both features have been observed before and have been attributed to
electron-electron interactions within a layer. We have measured high field
tunneling peak positions and fitted gap parameters that are proportional to
, and independent of the carrier densities of the two layers. This suggests
a different origin for the gap to that proposed by current theories, which
predict a dependence.Comment: 9 pages, cond-mat/yymmnn
Pain in the Ash: How Coal-Fired Power Plants Are Polluting Our Nation\u27s Waters Without Consequences
- …
