2,109 research outputs found
Multilevel Models of Krypton for the Application to Stepwise Ionization Relaxation Processes
A four step model and two five step models of krypton are developed for application to stepwise ionization relaxation. The four step model is preferred out of practical and economical grounds. The corresponding rate equations for collisional excitation and ionization are given assuming ladder climbing for the electrons. Selected results of an application of the model to ionization relaxation in shock waves are reported
Safety conscious or living dangerously: what is the ‘right’ level of plant photoprotection for fitness and productivity?
Due to their sessile nature, plants could be perceived to be relatively slow and rather un-reactive. However, a plant scientist will tell you that the inability to run away (tropism notwithstanding) actually demands a highly sophisticated physiological response to the environment. Light presents an extreme case: cloud cover and wind-induced motion can lead to irradiance changes of several orders of magnitude over timescales of seconds and minutes. Being autotrophic organisms and having evolved to harvest light, plants need to dynamically regulate their biochemistry so that it operates efficiently during these fluxes, maintaining plant fitness but minimising the risk of damage.
Photosynthesis is driven at a rate that depends on the amount of available light, as shown by the schematic photosynthesis-light response curves of C3 species (Fig. 1). In nature, CO2 assimilation can go from being light-limited to being light-saturated within a very short period of time. To maximise CO2 uptake, photosynthesis should ‘track’ light levels accurately inducing and removing photoprotective processes accurately. Being able to measure photoprotection precisely in naturally fluctuating settings is difficult; however, a paper in this volume of Plant, Cell and Environment proposes a significant advance (Tietz et al. 2017)
Labelling of liposomes with intercalating perylene fluorescent dyes
The high fluorescent potential and the exceptional photostability of lipophilic derivatives of perylene-3,4:9,10-bis(dicarboximides) are utilized for the fluorescence-labelling of liposomes. The preparation of the liposomes is affected by supersonic starting from a lipid mixture consisting of the matrix lipids soy lecithin, cholesterol, -tocopherol and the perylene dyes. From a multitude of perylene derivatives investigated only those are optimally incorporated inot the bilayer membrane of unilamellar liposomes which are substituted at both nitrogen atoms by one or two linear hydrocarbon groups. In order to attain an optimal fluorescent quantum yield, about 200 to 300 dye molecules can be incorporated per liposome. The liposomes thus obtained have a diameter of about 70 to 80 nm, are homogeneous and may be stored for more than seven months. Neither the fluorescent properties nor the stability of these liposomes are influenced by the additional incorporation of various ara C-derivatives and lipophilic anchor groups which subsequently enable the coupling of antibodies to the liposomes. As the water-insoluble perylene dyes are incorporated into the bilayer membrane, the aqueous inner volume of the liposomes remains available for a fruther utilization
The Relation between Packing Effects and Solid State Fluorescence of Dyes
The solid state fluorescence of diketopyrrolopyrrole dyes and perylene-3,4:9,10- tetracarboxylic bisimides with alkyl substituents are investigated and compared with noncovalent interactions. The latter are estimated by crystal structure analysis, heats and entropies of fusion and solubilities in organic solvents. Applications of the dyes are discussed
Viewing oxidative stress through the lens of oxidative signalling rather than damage
Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of PSII function called photoinhibition, where photo-protection has classically been conflated with oxidative damage
Comparative studies of the preparation of immunoliposomes with the use of two bifunctional coupling agents and investigation of in vitro immunoliposome-target cell binding by cytofluorometry and electron microscopy
The two coupling agents SPDP (N-succinimidyl-3-(2-pyridyldithio)propionate) and SATA (N-succinimidyl-S-acetylthioacetate) were compared in their efficiency and feasibility to couple monoclonal antibodies (Abs) via thioether linkage to liposomes functionalized by various lipophilic maleimide compounds like
Full-size image
methyl ester (MP-PL), N-(3-maleimidopropionyl)phosphatidylethanolamide (MP-PE),
Full-size image
methyl ester (EMC-PL), and N-(6-maleimidocaproyl)phosphatidylethanolamine (EMC-PE). The composition of the liposomes was soy phosphatidylcholine (SPC), cholesterol, maleimide compounds and -tocopherol (1:0.2:0.02:0.01, mol parts), plus N4-oleylcytosine arabinoside (NOAC) as cytostatic prodrug (0.2 mol parts) and a new, lipophilic and highly fluorescent dye N,N′-bis(1-hexylheptyl)-3,4:9,10-perylenebis(dicarboximide) (BHPD, 0.006 mol parts). From the maleimide derivatives MP-PL was the most effective in terms of preservation of the coupling activity in dependence of liposome storage. The coupling of the monoclonal A B8-24.3 (mouse IgG2b, MHC class I, anti H-2kb) and IB16-6 (rat IgG2a, anti B16 mouse melanoma) to the drug carrying liposomes was more effective and easier to accomplish with SATA as compared to SPDP. Coupling rates of 60–65% were obtained with SATA at molar ratios of 12 SATA:1 Ab:40 maleimide spacer groups on the surface of one liposome. The highest coupling rates with SPDP were obtained at the ratio of 24 SPDP:1 Ab:40 liposomal maleimide groups, with an Ab binding efficiency of only 20–25%. The optimal in vitro binding conditions to specific target cells (EL4 for B8-24.3-liposomes and B16-F10 for IB16-6-liposomes) were determined by cytofluorometric measurement of the liposomal BHPD fluorescence with SATA linked Abs. Optimal immunoliposome binding to specific epitopes on the target cells was achieved with 1–2 Ab molecules coupled to one liposome, with immunoliposome concentrations of 20–130 nM and with a small incubation volume of 0.3–0.4 ml. The specificity of the binding of B8-24.3-liposomes to EL4 target cells was visualized by scanning electron microscopy. Antibody mediated endocytic uptake of immunoliposomes could be demonstrated by transmission electron microscopy
- …
