41 research outputs found

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.Doctoral funding from the Ministère de l'Enseignement Supérieur et de la Recherche; Europe exchange 2018 Erasmus; European Reintegration Grant, Grant/Award Number: PERG04-GA-2008-231125; Fondation de France-Berthe Fouassier; Foundation Fighting Blindness, Grant/Award Number: Grant # CD-CL-0808-0466-CHNO CIC503 recogn; Foundation Voir et Entendre; French Agence Nationale de la Recherche, Grant/Award Numbers: IHU FOReSIGHT: ANR-18-IAHU-0001, LIFESENSES: ANR-10-LABX-65; National Eye Institute [R01EY012910 (EAP), R01EY026904 (KMB/EAP) and P30EY014104 (MEEI core support)], the Foundation Fightin

    Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza?

    No full text
    Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1–ITS2 and bacterial V3–V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with &gt;1000 reads/sample in 47.3% (18/38) compared to NFRS (p &lt; 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi–bacteria interactions in a mixed biofilm-like structure.</jats:p

    Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza?

    No full text
    Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1–ITS2 and bacterial V3–V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with &gt;1000 reads/sample in 47.3% (18/38) compared to NFRS (p &lt; 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi–bacteria interactions in a mixed biofilm-like structure

    Genetic and Phenotypic Study of the <i>Pectobacterium versatile</i> Beta-Lactamase, the Enzyme Most Similar to the Plasmid-Encoded TEM-1

    Full text link
    This study aimed to compare the chromosomal beta-lactamase from Pectobacterium versatile , PEC-1, with the well-known and globally distributed TEM-1 in terms of genetic and functional properties. Despite the similarities between the enzymes, we obtained no definitive proof of gene transfer for the emergence of bla PEC-1 from bla TEM-1 . </jats:p

    BNT162b2 Messenger RNA Vaccination Did Not Prevent an Outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 Variant 501Y.V2 in an Elderly Nursing Home but Reduced Transmission and Disease Severity

    No full text
    International audienceAbstract We report an outbreak of severe acute respiratory syndrome coronavirus 2 501Y.V2 in a nursing home. All nonvaccinated residents (5/5) versus half of those vaccinated with BNT162b2 (13/26) were infected. Two of 13 vaccinated versus 4 of 5 nonvaccinated residents presented severe disease. BNT162b2 did not prevent the outbreak, but reduced transmission and disease severity

    Macrophage autophagy protects against hepatocellular carcinogenesis in mice

    No full text
    AbstractAutophagy is a lysosomal degradation pathway of cellular components that regulates macrophage properties. Macrophages are critically involved in tumor growth, metastasis, angiogenesis and immune suppression. Here, we investigated whether macrophage autophagy may protect against hepatocellular carcinoma (HCC). Experiments were performed in mice with deletion of the autophagy gene Atg5 in the myeloid lineage (ATG5Mye−/− mice) and their wild-type (WT) littermates. As compared to WT, ATG5Mye−/− mice were more susceptible to diethylnitrosamine (DEN)-induced hepatocarcinogenesis, as shown by enhanced tumor number and volume. Moreover, DEN-treated ATG5Mye−/− mice exhibited compromised immune cell recruitment and activation in the liver, suggesting that macrophage autophagy invalidation altered the antitumoral immune response. RNA sequencing showed that autophagy-deficient macrophages sorted from DEN mice are characterized by an enhanced expression of immunosuppressive markers. In vitro studies demonstrated that hepatoma cells impair the autophagy flux of macrophages and stimulate their expression of programmed cell death-ligand 1 (PD-L1), a major regulator of the immune checkpoint. Moreover, pharmacological activation of autophagy reduces hepatoma cell-induced PD-L1 expression in cultured macrophages while inhibition of autophagy further increases PD-L1 expression suggesting that autophagy invalidation in macrophages induces an immunosuppressive phenotype. These results uncover macrophage autophagy as a novel protective pathway regulating liver carcinogenesis.</jats:p
    corecore