964 research outputs found
Effect of pulsed methylprednisolone on pain, in patients with HTLV-1-associated myelopathy
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an immune mediated myelopathy caused by the human T-lymphotropic virus type 1 (HTLV-1). The efficacy of treatments used for patients with HAM/TSP is uncertain. The aim of this study is to document the efficacy of pulsed methylprednisolone in patients with HAM/TSP. Data from an open cohort of 26 patients with HAM/TSP was retrospectively analysed. 1g IV methylprednisolone was infused on three consecutive days. The outcomes were pain, gait, urinary frequency and nocturia, a range of inflammatory markers and HTLV-1 proviral load. Treatment was well tolerated in all but one patient. Significant improvements in pain were: observed immediately, unrelated to duration of disease and maintained for three months. Improvement in gait was only seen on Day 3 of treatment. Baseline cytokine concentrations did not correlate to baseline pain or gait impairment but a decrease in tumour necrosis factor-alpha (TNF-α) concentration after pulsed methylprednisolone was associated with improvements in both. Until compared with placebo, treatment with pulsed methylprednisolone should be offered to patients with HAM/TSP for the treatment of pain present despite regular analgesia
Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients
Exact solutions to the focusing nonlinear Schrodinger equation
A method is given to construct globally analytic (in space and time) exact
solutions to the focusing cubic nonlinear Schrodinger equation on the line. An
explicit formula and its equivalents are presented to express such exact
solutions in a compact form in terms of matrix exponentials. Such exact
solutions can alternatively be written explicitly as algebraic combinations of
exponential, trigonometric, and polynomial functions of the spatial and
temporal coordinates.Comment: 60 pages, 18 figure
Diffusion in tight confinement: a lattice-gas cellular automaton approach. I. Structural equilibrium properties
The thermodynamic and transport properties of diffusing species in microporous materials are strongly influenced by their interactions with the confining framework, which provide the energy landscape for the transport process. The simple topology and the cellular nature of the α cages of a ZK4 zeolite suggest that it is appropriate to apply to the study of the problem of diffusion in tight confinement a time-space discrete model such as a lattice-gas cellular automaton (LGCA). In this paper we investigate the properties of an equilibrium LGCA constituted by a constant number of noninteracting identical particles, distributed among a fixed number of identical cells arranged in a three-dimensional cubic network and performing a synchronous random walk at constant temperature. Each cell of this network is characterized by a finite number of two types of adsorption sites: the exit sites available to particle transfer and the inner sites not available to such transfers. We represent the particle-framework interactions by assuming a differentiation in binding energy of the two types of sites. This leads to a strong dependence of equilibrium and transport properties on loading and temperature. The evolution rule of our LGCA model is constituted by two operations (randomization, in which the number of particles which will be able to try a jump to neighboring cells is determined, and propagation, in which the allowed jumps are performed), each one applied synchronously to all of the cells. The authors study the equilibrium distribution of states and the adsorption isotherm of the model under various conditions of loading and temperature. In connection with the differentiation in energy between exit and inner sites, the adsorption isotherm is described by a conventional Langmuir isotherm at high temperature and by a dual-site Langmuir isotherm at low temperature, while a first order diffuse phase transition takes place at very low temperature
Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF
AbstractNeurotrophic factors have been investigated in relation to depression. The aim of the present study was to widen this focus to sortilin, a receptor involved in neurotrophic signalling. The serum sortilin level was investigated in 152 individuals with depression and 216 control individuals, and eight genetic markers located within the SORT1 gene were successfully analysed for association with depression. Genotyping was performed using the Sequenom MassARRAY platform. All the individuals returned a questionnaire and participated in a semi-structured diagnostic interview. Sortilin levels were measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum sortilin levels in depressed individuals compared with controls (P=0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate to altered activity of neurotrophic factors.</jats:p
Hypomethylation of FAM63B in bipolar disorder patients
Bipolar disorder (BD) and schizophrenia (SZ) are known to share common genetic and psychosocial risk factors. A recent epigenome-wide association study performed on blood samples from SZ patients found significant hypomethylation of FAM63B in exon 9. Here, we used iPLEX-based methylation analysis to investigate two CpG sites in FAM63B in blood samples from 459 BD cases and 268 controls. Both sites were significantly hypomethylated in BD cases (lowest p value = 3.94 × 10−8). The methylation levels at the two sites were correlated, and no strong correlation was found with nearby single nucleotide polymorphisms (SNPs), suggesting that methylation differences at these sites are not readably picked up by genome-wide association studies. Overall, FAM63B hypomethylation was found in BD patients, thus replicating the initial finding in SZ patients. This study suggests that FAM63B is a shared epigenetic risk gene for the two disorders
CACNA1C hypermethylation is associated with bipolar disorder
The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10(-7) for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10(-7)) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation
High prevalence of bronchiectasis is linked to HTLV-1-associated inflammatory disease.
BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1), a retrovirus, is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukaemia/lymphoma (ATLL). The reported association with pulmonary disease such as bronchiectasis is less certain. METHODS: A retrospective case review of a HTLV-1 seropositive cohort attending a national referral centre. The cohort was categorised into HTLV-1 symptomatic patients (SPs) (ATLL, HAM/TSP, Strongyloidiasis and HTLV associated inflammatory disease (HAID)) and HTLV-1 asymptomatic carriers (ACs). The cohort was reviewed for diagnosis of bronchiectasis. RESULT: 34/246 ACs and 30/167 SPs had been investigated for respiratory symptoms by computer tomography (CT) with productive cough +/- recurrent chest infections the predominant indications. Bronchiectasis was diagnosed in one AC (1/246) and 13 SPs (2 HAID, 1 ATLL, 10 HAM/TSP) (13/167, RR 19.2 95 % CI 2.5-14.5, p = 0.004) with high resolution CT. In the multivariate analysis ethnicity (p = 0.02) and disease state (p < 0.001) were independent predictors for bronchiectasis. The relative risk of bronchiectasis in SPs was 19.2 (95 % CI 2.5-14.5, p = 0.004) and in HAM/TSP patients compared with all other categories 8.4 (95 % CI 2.7-26.1, p = 0.0002). Subjects not of African/Afro-Caribbean ethnicity had an increased prevalence of bronchiectasis (RR 3.45 95 % 1.2-9.7, p = 0.02). CONCLUSIONS: Bronchiectasis was common in the cohort (3.4 %). Risk factors were a prior diagnosis of HAM/TSP and ethnicity but not HTLV-1 viral load, age and gender. The spectrum of HTLV-associated disease should now include bronchiectasis and HTLV serology should be considered in patients with unexplained bronchiectasis
Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore
Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n=32, Carpathian Mountains n=7, Dinaric-Balkan n=9, Ukrainian Steppe n=11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.201
Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies
- …
