1,925 research outputs found

    A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data

    Full text link
    The expectation-maximization (EM) algorithm is a powerful computational technique for finding the maximum likelihood estimates for parametric models when the data are not fully observed. The EM is best suited for situations where the expectation in each E-step and the maximization in each M-step are straightforward. A difficulty with the implementation of the EM algorithm is that each E-step requires the integration of the log-likelihood function in closed form. The explicit integration can be avoided by using what is known as the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate the integral at each E-step. However, the problem with the MCEM is that it often converges to the integral quite slowly and the convergence behavior can also be unstable, which causes a computational burden. In this paper, we propose what we refer to as the quantile variant of the EM (QEM) algorithm. We prove that the proposed QEM method has an accuracy of O(1/K2)O(1/K^2) while the MCEM method has an accuracy of Op(1/K)O_p(1/\sqrt{K}). Thus, the proposed QEM method possesses faster and more stable convergence properties when compared with the MCEM algorithm. The improved performance is illustrated through the numerical studies. Several practical examples illustrating its use in interval-censored data problems are also provided

    Fast non-negative deconvolution for spike train inference from population calcium imaging

    Full text link
    Calcium imaging for observing spiking activity from large populations of neurons are quickly gaining popularity. While the raw data are fluorescence movies, the underlying spike trains are of interest. This work presents a fast non-negative deconvolution filter to infer the approximately most likely spike train for each neuron, given the fluorescence observations. This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm is fast enough that even when imaging over 100 neurons, inference can be performed on the set of all observed traces faster than real-time. Performing optimal spatial filtering on the images further refines the estimates. Importantly, all the parameters required to perform the inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological and imaging calibration experiments.Comment: 22 pages, 10 figure

    Adaptive Seeding for Gaussian Mixture Models

    Full text link
    We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known KK-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original KK-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016. The final publication is available at link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2 24

    Evidence Propagation and Consensus Formation in Noisy Environments

    Full text link
    We study the effectiveness of consensus formation in multi-agent systems where there is both belief updating based on direct evidence and also belief combination between agents. In particular, we consider the scenario in which a population of agents collaborate on the best-of-n problem where the aim is to reach a consensus about which is the best (alternatively, true) state from amongst a set of states, each with a different quality value (or level of evidence). Agents' beliefs are represented within Dempster-Shafer theory by mass functions and we investigate the macro-level properties of four well-known belief combination operators for this multi-agent consensus formation problem: Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging operator. The convergence properties of the operators are considered and simulation experiments are conducted for different evidence rates and noise levels. Results show that a combination of updating on direct evidence and belief combination between agents results in better consensus to the best state than does evidence updating alone. We also find that in this framework the operators are robust to noise. Broadly, Yager's rule is shown to be the better operator under various parameter values, i.e. convergence to the best state, robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen

    Efficient Bayesian-based Multi-View Deconvolution

    Full text link
    Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application has been limited due to the large size of the datasets. Here we present a Bayesian- based derivation of multi-view deconvolution that drastically improves the convergence time and provide a fast implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method

    A reliability-based approach for influence maximization using the evidence theory

    Get PDF
    The influence maximization is the problem of finding a set of social network users, called influencers, that can trigger a large cascade of propagation. Influencers are very beneficial to make a marketing campaign goes viral through social networks for example. In this paper, we propose an influence measure that combines many influence indicators. Besides, we consider the reliability of each influence indicator and we present a distance-based process that allows to estimate the reliability of each indicator. The proposed measure is defined under the framework of the theory of belief functions. Furthermore, the reliability-based influence measure is used with an influence maximization model to select a set of users that are able to maximize the influence in the network. Finally, we present a set of experiments on a dataset collected from Twitter. These experiments show the performance of the proposed solution in detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc

    Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators

    Get PDF
    Optimal and suboptimal decentralized estimators in wireless sensor networks (WSNs) over orthogonal multiple-access fading channels are studied in this paper. Considering multiple-bit quantization before digital transmission, we develop maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly uses the training symbols to estimate the channel coefficients and exploits the estimated CSI in an optimal way. To reduce the computational complexity, we propose suboptimal estimators. These estimators exploit both signal and data level redundant information to improve the estimation performance. The proposed MLEs reduce to traditional fusion based or diversity based estimators when communications or observations are perfect. By introducing a general message function, the proposed estimators can be applied when various analog or digital transmission schemes are used. The simulations show that the estimators using digital communications with multiple-bit quantization outperform the estimator using analog-and-forwarding transmission in fading channels. When considering the total bandwidth and energy constraints, the MLE using multiple-bit quantization is superior to that using binary quantization at medium and high observation signal-to-noise ratio levels

    Retinal blood vessels extraction using probabilistic modelling

    Get PDF
    © 2014 Kaba et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.The Department of Information Systems, Computing and Mathematics, Brunel University

    A computational framework to emulate the human perspective in flow cytometric data analysis

    Get PDF
    Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation. <p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods. <p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics
    corecore