1,925 research outputs found
A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data
The expectation-maximization (EM) algorithm is a powerful computational
technique for finding the maximum likelihood estimates for parametric models
when the data are not fully observed. The EM is best suited for situations
where the expectation in each E-step and the maximization in each M-step are
straightforward. A difficulty with the implementation of the EM algorithm is
that each E-step requires the integration of the log-likelihood function in
closed form. The explicit integration can be avoided by using what is known as
the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate
the integral at each E-step. However, the problem with the MCEM is that it
often converges to the integral quite slowly and the convergence behavior can
also be unstable, which causes a computational burden. In this paper, we
propose what we refer to as the quantile variant of the EM (QEM) algorithm. We
prove that the proposed QEM method has an accuracy of while the MCEM
method has an accuracy of . Thus, the proposed QEM method
possesses faster and more stable convergence properties when compared with the
MCEM algorithm. The improved performance is illustrated through the numerical
studies. Several practical examples illustrating its use in interval-censored
data problems are also provided
Fast non-negative deconvolution for spike train inference from population calcium imaging
Calcium imaging for observing spiking activity from large populations of
neurons are quickly gaining popularity. While the raw data are fluorescence
movies, the underlying spike trains are of interest. This work presents a fast
non-negative deconvolution filter to infer the approximately most likely spike
train for each neuron, given the fluorescence observations. This algorithm
outperforms optimal linear deconvolution (Wiener filtering) on both simulated
and biological data. The performance gains come from restricting the inferred
spike trains to be positive (using an interior-point method), unlike the Wiener
filter. The algorithm is fast enough that even when imaging over 100 neurons,
inference can be performed on the set of all observed traces faster than
real-time. Performing optimal spatial filtering on the images further refines
the estimates. Importantly, all the parameters required to perform the
inference can be estimated using only the fluorescence data, obviating the need
to perform joint electrophysiological and imaging calibration experiments.Comment: 22 pages, 10 figure
Adaptive Seeding for Gaussian Mixture Models
We present new initialization methods for the expectation-maximization
algorithm for multivariate Gaussian mixture models. Our methods are adaptions
of the well-known -means++ initialization and the Gonzalez algorithm.
Thereby we aim to close the gap between simple random, e.g. uniform, and
complex methods, that crucially depend on the right choice of hyperparameters.
Our extensive experiments indicate the usefulness of our methods compared to
common techniques and methods, which e.g. apply the original -means++ and
Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication
in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery
and Data Mining (PAKDD) 2016. The final publication is available at
link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2
24
Evidence Propagation and Consensus Formation in Noisy Environments
We study the effectiveness of consensus formation in multi-agent systems
where there is both belief updating based on direct evidence and also belief
combination between agents. In particular, we consider the scenario in which a
population of agents collaborate on the best-of-n problem where the aim is to
reach a consensus about which is the best (alternatively, true) state from
amongst a set of states, each with a different quality value (or level of
evidence). Agents' beliefs are represented within Dempster-Shafer theory by
mass functions and we investigate the macro-level properties of four well-known
belief combination operators for this multi-agent consensus formation problem:
Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging
operator. The convergence properties of the operators are considered and
simulation experiments are conducted for different evidence rates and noise
levels. Results show that a combination of updating on direct evidence and
belief combination between agents results in better consensus to the best state
than does evidence updating alone. We also find that in this framework the
operators are robust to noise. Broadly, Yager's rule is shown to be the better
operator under various parameter values, i.e. convergence to the best state,
robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen
Efficient Bayesian-based Multi-View Deconvolution
Light sheet fluorescence microscopy is able to image large specimen with high
resolution by imaging the sam- ples from multiple angles. Multi-view
deconvolution can significantly improve the resolution and contrast of the
images, but its application has been limited due to the large size of the
datasets. Here we present a Bayesian- based derivation of multi-view
deconvolution that drastically improves the convergence time and provide a fast
implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method
A reliability-based approach for influence maximization using the evidence theory
The influence maximization is the problem of finding a set of social network
users, called influencers, that can trigger a large cascade of propagation.
Influencers are very beneficial to make a marketing campaign goes viral through
social networks for example. In this paper, we propose an influence measure
that combines many influence indicators. Besides, we consider the reliability
of each influence indicator and we present a distance-based process that allows
to estimate the reliability of each indicator. The proposed measure is defined
under the framework of the theory of belief functions. Furthermore, the
reliability-based influence measure is used with an influence maximization
model to select a set of users that are able to maximize the influence in the
network. Finally, we present a set of experiments on a dataset collected from
Twitter. These experiments show the performance of the proposed solution in
detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc
Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators
Optimal and suboptimal decentralized estimators in wireless sensor networks
(WSNs) over orthogonal multiple-access fading channels are studied in this
paper. Considering multiple-bit quantization before digital transmission, we
develop maximum likelihood estimators (MLEs) with both known and unknown
channel state information (CSI). When training symbols are available, we derive
a MLE that is a special case of the MLE with unknown CSI. It implicitly uses
the training symbols to estimate the channel coefficients and exploits the
estimated CSI in an optimal way. To reduce the computational complexity, we
propose suboptimal estimators. These estimators exploit both signal and data
level redundant information to improve the estimation performance. The proposed
MLEs reduce to traditional fusion based or diversity based estimators when
communications or observations are perfect. By introducing a general message
function, the proposed estimators can be applied when various analog or digital
transmission schemes are used. The simulations show that the estimators using
digital communications with multiple-bit quantization outperform the estimator
using analog-and-forwarding transmission in fading channels. When considering
the total bandwidth and energy constraints, the MLE using multiple-bit
quantization is superior to that using binary quantization at medium and high
observation signal-to-noise ratio levels
Retinal blood vessels extraction using probabilistic modelling
© 2014 Kaba et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.The Department of Information Systems, Computing and Mathematics, Brunel University
A computational framework to emulate the human perspective in flow cytometric data analysis
Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation.
<p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods.
<p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics
- …
