1,028 research outputs found
Vacuum polarization for lukewarm black holes
We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordström–de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (“lukewarm” black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case
Neurosurgical Management of Self-Inflicted Cranial Crossbow Injury
Background
Although gun-related penetrating traumatic brain injuries make up the majority of cranial missile injuries, low-velocity penetrating injuries present significant clinical difficulties that cannot necessarily be identically managed. Bow hunting is an increasingly popular pastime, and a crossbow allows a unique mechanism to cause a self-inflicted cranial injury with a large, low-velocity projectile. Historically, arrow removal is described in an operating room setting, which provides limited knowledge of the location of vascular injury in the setting of postremoval hemorrhage, and may represent an inefficient use of operating room availability.
Case Description
Two patients presented after self-inflicted cranial crossbow injuries. Both were neurologically salvageable. Initial assessment with computed tomography angiography allowed triage into likely or unlikely vascular injury. Arrow removal was performed in a radiology setting rather than in the operating room to allow immediate postremoval imaging to localize hemorrhage. While an operating room was on standby, neither patient required neurosurgical operative intervention. Both patients made a good recovery with no further injury caused by arrow removal.
Conclusions
We describe a novel approach to retained cranial arrow removal in a radiologic, rather than operative, setting and describe its relative benefits over traditional removal in the operating room
Trace Anomaly in Quantum Spacetime Manifold
In this paper we investigate the trace anomaly in a spacetime where single
events are de-localized as a consequence of short distance quantum coordinate
fluctuations. We obtain a modified form of heat kernel asymptotic expansion
which does not suffer from short distance divergences. Calculation of the trace
anomaly is performed using an IR regulator in order to circumvent the absence
of UV infinities. The explicit form of the trace anomaly is presented and the
corresponding 2D Polyakov effective action and energy momentumtensor are
obtained. The vacuum expectation value of the energy momentum tensor in the
Boulware, Hartle-Hawking and Unruh vacua is explicitly calculated in a
(rt)-section of a recently found, noncommutative geometry inspired,
Schwarzschild-like solution of the Einstein equations. The standard short
distance divergences in the vacuum expectation values are regularized in
agreement with the absence of UV infinities removed by quantum coordinate
fluctuations.Comment: 15pages, RevTex, no figures, 1 Tabl
One-Loop Renormalization of a Self-Interacting Scalar Field in Nonsimply Connected Spacetimes
Using the effective potential, we study the one-loop renormalization of a
massive self-interacting scalar field at finite temperature in flat manifolds
with one or more compactified spatial dimensions. We prove that, owing to the
compactification and finite temperature, the renormalized physical parameters
of the theory (mass and coupling constant) acquire thermal and topological
contributions. In the case of one compactified spatial dimension at finite
temperature, we find that the corrections to the mass are positive, but those
to the coupling constant are negative. We discuss the possibility of
triviality, i.e. that the renormalized coupling constant goes to zero at some
temperature or at some radius of the compactified spatial dimension.Comment: 16 pages, plain LATE
The Fulling-Unruh effect in general stationary accelerated frames
We study the generalized Unruh effect for accelerated reference frames that
include rotation in addition to acceleration. We focus particularly on the case
where the motion is planar, with presence of a static limit in addition to the
event horizon. Possible definitions of an accelerated vacuum state are examined
and the interpretation of the Minkowski vacuum state as a thermodynamic state
is discussed. Such athermodynamic state is shown to depend on two parameters,
the acceleration temperature and a drift velocity, which are determined by the
acceleration and angular velocity of the accelerated frame. We relate the
properties of Minkowski vacuum in the accelerated frame to the excitation
spectrum of a detector that is stationary in this frame. The detector can be
excited both by absorbing positive energy quanta in the "hot" vacuum state and
by emitting negative energy quanta into the "ergosphere" between the horizon
and the static limit. The effects are related to similar effects in the
gravitational field of a rotating black hole.Comment: Latex, 39 pages, 5 figure
Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles
Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors. Small interfering RNA (siRNA) is a promising modality for anti-neoplastic therapy due to its precision and wide range of potential therapeutic targets. Unfortunately, siRNA therapy is limited by low serum half-life, vulnerability to intracellular digestion, and transient therapeutic effect. We assessed the ability of a peptide based, oligonucleotide condensing, endosomolytic nanoparticle (NP) system to deliver siRNA to KRAS-driven cancers. We show that this peptide-based NP is avidly taken up by cancer cell
Black Hole Evaporation in an Expanding Universe
We calculate the quantum radiation power of black holes which are asymptotic
to the Einstein-de Sitter universe at spatial and null infinities. We consider
two limiting mass accretion scenarios, no accretion and significant accretion.
We find that the radiation power strongly depends on not only the asymptotic
condition but also the mass accretion scenario. For the no accretion case, we
consider the Einstein-Straus solution, where a black hole of constant mass
resides in the dust Friedmann universe. We find negative cosmological
correction besides the expected redshift factor. This is given in terms of the
cubic root of ratio in size of the black hole to the cosmological horizon, so
that it is currently of order but could have been significant at the formation epoch of
primordial black holes. Due to the cosmological effects, this black hole has
not settled down to an equilibrium state. This cosmological correction may be
interpreted in an analogy with the radiation from a moving mirror in a flat
spacetime. For the significant accretion case, we consider the Sultana-Dyer
solution, where a black hole tends to increase its mass in proportion to the
cosmological scale factor. In this model, we find that the radiation power is
apparently the same as the Hawking radiation from the Schwarzschild black hole
of which mass is that of the growing mass at each moment. Hence, the energy
loss rate decreases and tends to vanish as time proceeds. Consequently, the
energy loss due to evaporation is insignificant compared to huge mass accretion
onto the black hole. Based on this model, we propose a definition of
quasi-equilibrium temperature for general conformal stationary black holes.Comment: Accepted for publication in Class.Quant.Grav., 18 pages and 3 figure
Coarse-Graining and Renormalization Group in the Einstein Universe
The Kadanoff-Wilson renormalization group approach for a scalar
self-interacting field theor generally coupled with gravity is presented. An
average potential that monitors the fluctuations of the blocked field in
different scaling regimes is constructed in a nonflat background and explicitly
computed within the loop-expansion approximation for an Einstein universe. The
curvature turns out to be dominant in setting the crossover scale from a
double-peak and a symmetric distribution of the block variables. The evolution
of all the coupling constants generated by the blocking procedure is examined:
the renormalized trajectories agree with the standard perturbative results for
the relevant vertices near the ultraviolet fixed point, but new effective
interactions between gravity and matter are present. The flow of the conformal
coupling constant is therefore analyzed in the improved scheme and the infrared
fixed point is reached for arbitrary values of the renormalized parameters.Comment: 18 pages, REVTex, two uuencoded figures. (to appear in Phys. Rev.
D15, July) Transmission errors have been correcte
Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma
- …
