460 research outputs found
Monte Carlo simulations of atomic layer deposition on 3D large surface area structures : required precursor exposure for pillar- versus hole-type structures
Development of a thermal ionizer as ion catcher
An effective ion catcher is an important part of a radioactive beam facility
that is based on in-flight production. The catcher stops fast radioactive
products and emits them as singly charged slow ions. Current ion catchers are
based on stopping in He and H gas. However, with increasing intensity of
the secondary beam the amount of ion-electron pairs created eventually prevents
the electromagnetic extraction of the radioactive ions from the gas cell. In
contrast, such limitations are not present in thermal ionizers used with the
ISOL production technique. Therefore, at least for alkaline and alkaline earth
elements, a thermal ionizer should then be preferred. An important use of the
TRIP facility will be for precision measurements using atom traps. Atom
trapping is particularly possible for alkaline and alkaline earth isotopes. The
facility can produce up to 10 s of various Na isotopes with the
in-flight method. Therefore, we have built and tested a thermal ionizer. An
overview of the operation, design, construction, and commissioning of the
thermal ionizer for TRIP will be presented along with first results for
Na and Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic
Isotope Separators and Techniques Related to their Applications (EMIS 2007
Dual Magnetic Separator for TRIP
The TRIP facility, under construction at KVI, requires the production
and separation of short-lived and rare isotopes. Direct reactions,
fragmentation and fusion-evaporation reactions in normal and inverse kinematics
are foreseen to produce nuclides of interest with a variety of heavy-ion beams
from the superconducting cyclotron AGOR. For this purpose, we have designed,
constructed and commissioned a versatile magnetic separator that allows
efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or
thermal ionizer, from which a low energy radioactive beam will be extracted.
The separator performance was tested with the production and clean separation
of Na ions, where a beam purity of 99.5% could be achieved. For
fusion-evaporation products, some of the features of its operation as a
gas-filled recoil separator were tested.Comment: accepted by Nucl.Instr. Meth., final versio
Aspects of Cooling at the TRIP Facility
The TriP facility at KVI is dedicated to provide short lived radioactive
isotopes at low kinetic energies to users. It comprised different cooling
schemes for a variety of energy ranges, from GeV down to the neV scale. The
isotopes are produced using beam of the AGOR cyclotron at KVI. They are
separated from the primary beam by a magnetic separator. A crucial part of such
a facility is the ability to stop and extract isotopes into a low energy
beamline which guides them to the experiment. In particular we are
investigating stopping in matter and buffer gases. After the extraction the
isotopes can be stored in neutral atoms or ion traps for experiments. Our
research includes precision studies of nuclear -decay through
- momentum correlations as well as searches for permanent electric
dipole moments in heavy atomic systems like radium. Such experiments offer a
large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3
figure
Production of Radioactive Nuclides in Inverse Reaction Kinematics
Efficient production of short-lived radioactive isotopes in inverse reaction
kinematics is an important technique for various applications. It is
particularly interesting when the isotope of interest is only a few nucleons
away from a stable isotope. In this article production via charge exchange and
stripping reactions in combination with a magnetic separator is explored. The
relation between the separator transmission efficiency, the production yield,
and the choice of beam energy is discussed. The results of some exploratory
experiments will be presented.Comment: 10 pages, 4 figures, to be submitted to Nucl. Instr. and Met
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
Plasma donor-derived cell-free DNA kinetics in stable renal transplant recipients and recipients with an acute rejection
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
- decay of the M=-1 nucleus Zn studied by selective laser ionization
- decay of Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for and - spectroscopy. The half-life of Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1 state at 1051 keV excitation in Cu agrees well with the value extracted from a recent (He, t) study. Extensive shell-model calculations are presented
- …
