5,752 research outputs found

    Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2

    Full text link
    Transition metal dichalcogenide MoTe2_2 is an important candidate for realizing the newly predicted type-IIWeyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low temperature phase of MoTe2_2 by systematic Raman experiments and first principles calculations. We identify five lattice vibrational modes which are Raman active only in noncentrosymmetric structure at low temperature. A hysteresis is also observed in the peak intensity of inversion symmetry activated Raman modes, confirming a temperature induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low temperature noncentrosymmetric Td_d phase from vibrational spectroscopy, and suggest MoTe2_2 as an ideal candidate for investigating the temperature induced topological phase transition

    Anderson Localization from Berry-Curvature Interchange in Quantum Anomalous Hall System

    Get PDF
    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE keeps quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the \textit{interchange} of Berry curvatures carried respectively by the conduction and valence bands. At the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.Comment: 6 pages, 4 figure

    Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy

    Full text link
    We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW
    corecore