593 research outputs found

    Generating and zeta functions, structure, spectral and analytic properties of the moments of Minkowski question mark function

    Full text link
    In this paper we are interested in moments of Minkowski question mark function ?(x). It appears that, to certain extent, the results are analogous to the results obtained for objects associated with Maass wave forms: period functions, L-series, distributions, spectral properties. These objects can be naturally defined for ?(x) as well. Despite the fact that there are various nice results about the nature of ?(x), these investigations are mainly motivated from the perspective of metric number theory, Hausdorff dimension, singularity and generalizations. In this work it is shown that analytic and spectral properties of various integral transforms of ?(x) do reveal significant information about the question mark function. We prove asymptotic and structural results about the moments, calculate certain integrals involving ?(x), define an associated zeta function, generating functions, Fourier series, and establish intrinsic relations among these objects. At the end of the paper it is shown that certain object associated with ?(x) establish a bridge between realms of imaginary and real quadratic irrationals.Comment: 34 pages, 4 figures (submitted 01/2008). Minor revisions and typos. A graph of dyadic zeta function on the critical line was added. Theorem 3 was strengthene

    Asymptotic formula for the moments of Minkowski question mark function in the interval [0,1]

    Full text link
    In this paper we prove the asymptotic formula for the moments of Minkowski question mark function, which describes the distribution of rationals in the Farey tree. The main idea is to demonstrate that certain a variation of a Laplace method is applicable in this problem, hence the task reduces to a number of technical calculations.Comment: 11 pages, 1 figure (final version). Lithuanian Math. J. (to appear

    Dynamical consequences of a free interval: minimality, transitivity, mixing and topological entropy

    Full text link
    We study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e., an open subset homeomorphic to an open interval). A special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.Comment: 21 page

    A toral diffeomorphism with a non-polygonal rotation set

    Full text link
    We construct a diffeomorphism of the two-dimensional torus which is isotopic to the identity and whose rotation set is not a polygon

    How do random Fibonacci sequences grow?

    Full text link
    We study two kinds of random Fibonacci sequences defined by F1=F2=1F_1=F_2=1 and for n1n\ge 1, Fn+2=Fn+1±FnF_{n+2} = F_{n+1} \pm F_{n} (linear case) or Fn+2=Fn+1±FnF_{n+2} = |F_{n+1} \pm F_{n}| (non-linear case), where each sign is independent and either + with probability pp or - with probability 1p1-p (0<p10<p\le 1). Our main result is that the exponential growth of FnF_n for 0<p10<p\le 1 (linear case) or for 1/3p11/3\le p\le 1 (non-linear case) is almost surely given by 0logxdνα(x),\int_0^\infty \log x d\nu_\alpha (x), where α\alpha is an explicit function of pp depending on the case we consider, and να\nu_\alpha is an explicit probability distribution on \RR_+ defined inductively on Stern-Brocot intervals. In the non-linear case, the largest Lyapunov exponent is not an analytic function of pp, since we prove that it is equal to zero for 0<p1/30<p\le1/3. We also give some results about the variations of the largest Lyapunov exponent, and provide a formula for its derivative

    A Phase Transition for Circle Maps and Cherry Flows

    Full text link
    We study C2C^{2} weakly order preserving circle maps with a flat interval. The main result of the paper is about a sharp transition from degenerate geometry to bounded geometry depending on the degree of the singularities at the boundary of the flat interval. We prove that the non-wandering set has zero Hausdorff dimension in the case of degenerate geometry and it has Hausdorff dimension strictly greater than zero in the case of bounded geometry. Our results about circle maps allow to establish a sharp phase transition in the dynamics of Cherry flows

    Ducks on the torus: existence and uniqueness

    Full text link
    We show that there exist generic slow-fast systems with only one (time-scaling) parameter on the two-torus, which have canard cycles for arbitrary small values of this parameter. This is in drastic contrast with the planar case, where canards usually occur in two-parametric families. Here we treat systems with a convex slow curve. In this case there is a set of parameter values accumulating to zero for which the system has exactly one attracting and one repelling canard cycle. The basin of the attracting cycle is almost the whole torus.Comment: To appear in Journal of Dynamical and Control Systems, presumably Vol. 16 (2010), No. 2; The final publication is available at www.springerlink.co

    Two ideals connected with strong right upper porosity at a point

    Get PDF
    Let SPSP be the set of upper strongly porous at 00 subsets of R+\mathbb R^{+} and let I^(SP)\hat I(SP) be the intersection of maximal ideals ISPI \subseteq SP. Some characteristic properties of sets EI^(SP)E\in\hat I(SP) are obtained. It is shown that the ideal generated by the so-called completely strongly porous at 00 subsets of R+\mathbb R^{+} is a proper subideal of I^(SP).\hat I(SP).Comment: 18 page

    Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions

    Full text link
    This paper is aimed to show the essential role played by the theory of quasi-analytic functions in the study of the determinacy of the moment problem on finite and infinite-dimensional spaces. In particular, the quasi-analytic criterion of self-adjointness of operators and their commutativity are crucial to establish whether or not a measure is uniquely determined by its moments. Our main goal is to point out that this is a common feature of the determinacy question in both the finite and the infinite-dimensional moment problem, by reviewing some of the most known determinacy results from this perspective. We also collect some properties of independent interest concerning the characterization of quasi-analytic classes associated to log-convex sequences.Comment: 28 pages, Stochastic and Infinite Dimensional Analysis, Chapter 9, Trends in Mathematics, Birkh\"auser Basel, 201

    Renormalisation scheme for vector fields on T2 with a diophantine frequency

    Full text link
    We construct a rigorous renormalisation scheme for analytic vector fields on the 2-torus of Poincare type. We show that iterating this procedure there is convergence to a limit set with a ``Gauss map'' dynamics on it, related to the continued fraction expansion of the slope of the frequencies. This is valid for diophantine frequency vectors.Comment: final versio
    corecore