243 research outputs found

    HST STIS spectroscopy of the triple nucleus of M31: two nested disks in Keplerian rotation around a Supermassive Black Hole

    Get PDF
    We present HST spectroscopy of the nucleus of M31 obtained with STIS. Spectra taken around the CaT lines at 8500 see only the red giants in the double bright- ness peaks P1 and P2. In contrast, spectra taken at 3600-5100 A are sensitive to the tiny blue nucleus embedded in P2, the lower surface brightness red nucleus. P2 has a K-type spectrum, but the embedded blue nucleus has an A-type spectrum with strong Balmer absorption lines. Given the small likelihood for stellar collisions, a 200 Myr old starburst appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity dispersion, the blue nucleus is so different from P1 and P2 that we call it P3. The line-of-sight velocity distributions of the red stars in P1+P2 strengthen the support for Tremaine s eccentric disk model. The kinematics of P3 is consistent with a circular stellar disk in Keplerian rotation around a super-massive black hole with M_bh = 1.4 x 10^8 M_sun. The P3 and the P1+P2 disks rotate in the same sense and are almost coplanar. The observed velocity dispersion of P3 is due to blurred rotation and has a maximum value of sigma = 1183+-201 km/s. The observed peak rotation velocity of P3 is V = 618+-81 km/s at radius 0.05" = 0.19 pc corresponding to a circular rotation velocity at this radius of ~1700 km/s. Any dark star cluster alternative to a black hole must have a half-mass radius <= 0.03" = 0.11 pc. We show that this excludes clusters of brown dwarfs or dead stars on astrophysical grounds.Comment: Astrophysical Journal, Sep 20, 2005, 21 pages including 20 figure

    Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc

    Full text link
    We present stellar kinematics and orbit superposition models for the central regions of four Brightest Cluster Galaxies (BCGs), based upon integral-field spectroscopy at Gemini, Keck, and McDonald Observatories. Our integral-field data span radii from < 100 pc to tens of kpc. We report black hole masses, M_BH, of 2.1 +/- 1.6 x 10^10 M_Sun for NGC 4889, 9.7 + 3.0 - 2.6 x 10^9 M_Sun for NGC 3842, and 1.3 + 0.5 - 0.4 x 10^9 M_Sun for NGC 7768. For NGC 2832 we report an upper limit of M_BH < 9 x 10^9 M_Sun. Stellar orbits near the center of each galaxy are tangentially biased, on comparable spatial scales to the galaxies' photometric cores. We find possible photometric and kinematic evidence for an eccentric torus of stars in NGC 4889, with a radius of nearly 1 kpc. We compare our measurements of M_BH to the predicted black hole masses from various fits to the relations between M_BH and stellar velocity dispersion, luminosity, or stellar mass. The black holes in NGC 4889 and NGC 3842 are significantly more massive than all dispersion-based predictions and most luminosity-based predictions. The black hole in NGC 7768 is consistent with a broader range of predictions.Comment: 24 pages, 18 figures. Accepted for publication in Ap

    Orbit-Based Dynamical Models of the Sombrero Galaxy (NGC 4594)

    Get PDF
    We present axisymmetric, orbit-based models to study the central black hole, stellar mass-to-light ratio, and dark matter halo of NGC 4594 (M104, the Sombrero Galaxy). For stellar kinematics, we use published high-resolution kinematics of the central region taken with the Hubble Space Telescope, newly obtained Gemini long-slit spectra of the major axis, and integral field kinematics from the SAURON instrument. At large radii, we use globular cluster kinematics to trace the mass profile and apply extra leverage to recovering the dark matter halo parameters. We find a black hole of mass M_{\bullet}=(6.6 +/- 0.4) x 10^8 M_{\odot}, and determine the stellar M/L_I=3.4 +/- 0.05 (uncertainties are the 68% confidence band marginalized over the other parameters). Our best fit dark matter halo is a cored logarithmic model with asymptotic circular speed V_c=376 +/- 12 km/s and core radius r_c= 4.7 +/- 0.6 kpc. The fraction of dark to total mass contained within the half-light radius is 0.52. Taking the bulge and disk components into account in our calculation of \sigma_e puts NGC 4594 squarely on the M-\sigma relation. We also determine that NGC 4594 lies directly on the M-L relation.Comment: 13 pages, 10 figures, accepted for publication in Ap

    The dynamics of apparent horizons in Robinson-Trautman spacetimes

    Full text link
    We present an alternative scheme of finding apparent horizons based on spectral methods applied to Robinson-Trautman spacetimes. We have considered distinct initial data such as representing the spheroids of matter and the head-on collision of two non-rotating black holes. The evolution of the apparent horizon is presented. We have obtained in some cases a mass gap between the final Bondi and apparent horizon masses, whose implications were briefly commented in the light of the thermodynamics of black holes.Comment: 9 pages, 7 figure

    Compact High-Redshift Galaxies Are the Cores of the Most Massive Present-Day Spheroids

    Get PDF
    Observations suggest that effective radii of high-z massive spheroids are as much as a factor ~6 smaller than low-z galaxies of comparable mass. Given the apparent absence of low-z counterparts, this has often been interpreted as indicating that the high density, compact red galaxies must be 'puffed up' by some mechanism. We compare the ensemble of high-z observations with large samples of well-observed low-z ellipticals. At the same physical radii, the stellar surface mass densities of low and high-z systems are comparable. Moreover, the abundance of high surface density material at low redshift is comparable to or larger than that observed at z>1-2, consistent with the continuous buildup of spheroids over this time. The entire population of compact, high-z red galaxies may be the progenitors of the high-density cores of present-day ellipticals, with no need for a decrease in stellar density from z=2 to z=0. The primary difference between low and high-z systems is thus the observed low-density material at large radii in low-z spheroids (rather than the high-density material in high-z spheroids). Such low-density material may either (1) assemble at z2. Mock observations of low-z massive systems show that the high-z observations do not yet probe sufficiently low surface brightness material to detect the low surface density 'wings' (if present). Thus, if the high-z galaxies resemble the most massive systems today, their inferred effective radii could be under-estimated by factors ~2-4. This difference arises because massive systems at low redshift are not well-fit by single Sersic profiles. We discuss implications of our results for physical models of galaxy evolution.Comment: 14 pages, 6 figures, accepted to MNRAS (revised to match published version

    A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

    Get PDF
    The early Universe at redshift z\sim6-11 marks the reionization of the intergalactic medium, following the formation of the first generation of stars. However, those young galaxies at a cosmic age of \lesssim 500 million years (Myr, at z \gtrsim 10) remain largely unexplored as they are at or beyond the sensitivity limits of current large telescopes. Gravitational lensing by galaxy clusters enables the detection of high-redshift galaxies that are fainter than what otherwise could be found in the deepest images of the sky. We report the discovery of an object found in the multi-band observations of the cluster MACS1149+22 that has a high probability of being a gravitationally magnified object from the early universe. The object is firmly detected (12 sigma) in the two reddest bands of HST/WFC3, and not detected below 1.2 {\mu}m, matching the characteristics of z\sim9 objects. We derive a robust photometric redshift of z = 9.6 \pm 0.2, corresponding to a cosmic age of 490 \pm 15Myr (i.e., 3.6% of the age of the Universe). The large number of bands used to derive the redshift estimate make it one of the most accurate estimates ever obtained for such a distant object. The significant magnification by cluster lensing (a factor of \sim15) allows us to analyze the object's ultra-violet and optical luminosity in its rest-frame, thus enabling us to constrain on its stellar mass, star-formation rate and age. If the galaxy is indeed at such a large redshift, then its age is less than 200 Myr (at the 95% confidence level), implying a formation redshift of zf \lesssim 14. The object is the first z>9 candidate that is bright enough for detailed spectroscopic studies with JWST, demonstrating the unique potential of galaxy cluster fields for finding highly magnified, intrinsically faint galaxies at the highest redshifts.Comment: Submitted to the Nature Journal. 39 Pages, 13 figure

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)
    corecore